Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Inżynierowie z California Institute of Technology (Caltech) skonstruowali inteligentną szalkę Petriego. Wbudowali w nią czujnik obrazu, taki sam jak w aparatach cyfrowych, kompletnie zmieniając sposób obrazowania i dokumentowania hodowli mikroorganizmów.

Artykuł na temat ePetri, jak Amerykanie nazwali swój wynalazek, ukazał się w piśmie Proceedings of the National Academy of Sciences (PNAS).

Do tej pory na dno szalki nakładano warstwę pożywki, a na nią krople roztworu z mikroorganizmami. Całość wstawiano do inkubatora, a potem, czasem wiele razy , naczynie wyjmowano, by obejrzeć pod mikroskopem postępy poczynione przez namnażające się bakterie czy grzyby. Przy wersji ePetri nie potrzeba mikroskopu, zmniejsza się nakład pracy człowieka, dodatkowo można poprawić jakość dokumentacji rozwoju hodowli.

Nasza szalka ePetri jest kompaktową, małą, bezsoczewkową platformą obrazowania mikroskopowego. Jesteśmy w stanie bezpośrednio śledzić kulturę wewnątrz inkubatora. Dzięki połączeniu kablowemu dane z szalki są automatycznie przekazywane do stojącego na zewnątrz laptopa - wyjaśnia Guoan Zheng, dodając, że oznacza to nie tylko mniej pracy dla człowieka, ale i mniejsze ryzyko skażenia hodowli.

Amerykanie zbudowali prototyp swojego urządzenia, wykorzystując smartfon Google'a, czujnik obrazu z telefonu komórkowego i... klocki LEGO. Hodowlę umieszcza się na czujniku. Wyświetlacz LED staje się skanującym źródłem światła. Naukowcy twierdzą, że ich technologia przydaje się zwłaszcza przy obrazowaniu zlewnych hodowli, które zajmują całe dno naczynia. Prof. Changhuei Yang wyjaśnia, że celem zespołu było uzyskanie systemu do szerokokątnego obrazowania mikroskopowego próbek zbitych komórek.

Akademicy z Caltechu podpowiadają, że platformę ePetri można także zastosować do detekcji toksycznych związków chemicznych czy narkotyków (zamiast zwykłego testu).

Biolog Michael Elowitz sprawdził skuteczność ePetri na embrionalnych komórkach macierzystych, które często zachowują się inaczej w poszczególnych rejonach szalki, bo przekształcają się w różne typy komórek. Zwykle pod mikroskopem naukowcy mogą obserwować w danym momencie tylko jeden ich rodzaj, tymczasem prototyp pozwolił na oglądanie całego dna naraz.

Amerykanie mogą obserwować żywe mikroorganizmy w szerokim zakresie skal: od poziomu subkomórkowego po makroskopowy. Obecnie trwają prace nad samowystarczalnym systemem z własnym inkubatorem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

IMO dla mikrobiologów wynalazek fantastyczny. Można monitorować kolonie na bierząco, oszczędzając jej wielokrotnego szoku termicznego przy wyciąganiu z cieplarki/chłodziarki. Przy okazji unikając kontaminacji "śmieciami" przy obserwacji... Przekonać teraz UŚ do zakupu/konstrukcji...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W Journal of Experimental Psychology: General opublikowano wyniki badań, z których dowiadujemy się, że używanie urządzeń elektronicznych, takich jak smartfony, pomaga poprawić nasze zdolności pamięciowe. Z badań przeprowadzonych przez naukowców z University College London (UCL) wynika, że na urządzeniach przechowujemy bardzo ważne informacje, to zaś zwalnia naszą pamięć i ułatwia przywoływanie dodatkowych, mniej ważnych informacji. Wyniki badań stoją w sprzeczności z wcześniejszymi obawami neurologów, którzy sądzili, że nadużywanie nowoczesnych technologii może prowadzić do upośledzenia zdolności poznawczych i powoduje „cyfrową demencję”.
      Okazało się jednak, że wykorzystywanie urządzeń cyfrowych jako pamięci zewnętrznej pomaga nie tylko w zapamiętywaniu informacji zapisanych na tych urządzeniach, ale również w zapamiętywaniu niezapisanych informacji.
      Naukowcy z UCL opracowali specjalny test pamięci na tablety i komputery. Do badań zaangażowali 158 ochotników w wieku 18–71 lat. Uczestnikom pokazywano na ekranie do 12 ponumerowanych okręgów, a ich zadaniem było przeciągnięcie części z nich na prawą, a części na lewą stronę ekranu. Badani mieli zapamiętać numery okręgów, jakie przeciągnęli na każdą ze stron. Im więcej ich zapamiętali, tym wyższą wypłatę otrzymywali na koniec eksperymentu. Jedna ze stron ekranu była stroną o wysokiej wartości. Za zapamiętanie przeciągniętego tam numeru płacono 10-krotnie więcej, niż za zapamiętanie numeru przeciągniętego na stronę o niskiej wartości.
      Uczestnicy wykonywali test 16-krotnie. Przy połowie testów musieli polegać wyłącznie na własnej pamięci, przy połowie zaś mogli zapisywać wyniki na urządzeniach elektronicznych. Badani zwykle zapisywali na urządzeniach elektronicznych wartości okręgów przeciąganych do strony o wysokiej wartości. Okazało się, że gdy to robili, byli w stanie samodzielnie zapamiętać o 18% więcej liczb przeciągniętych do strony o wysokiej wartości. Ale to nie wszystko. Zapamiętywali też o 27% liczb przeciągniętych do strony o niższej wartości, mimo że tych liczb nie zapisywali.
      Jednak używanie urządzeń elektronicznych miało też i negatywną stronę. Gdy je bowiem uczestnikom badań zabrano, lepiej pamiętali liczby ze strony o niższej wartości. To wskazuje, że zapamiętywanie liczb o wyższej wartości powierzyli urządzeniu elektronicznemu i bardzo szybko o nich zapomnieli.
      Chcieliśmy zbadać, jak przechowywanie informacji na urządzeniu elektronicznym wpływa na zdolność do zapamiętywania. Odkryliśmy, że gdy ludzie mogą używać pamięci zewnętrznej, pomaga im to w zapamiętywaniu informacji, które zapisali. To nie było zaskoczeniem. Ale zauważyliśmy też, że lepiej zapamiętywali informacje, których nie zapisali. Działo się tak, gdyż używanie urządzenia elektronicznego zmieniło sposób, w jaki używali pamięci do przechowywania ważnych i mniej ważnych danych. Gdy musimy zapamiętać coś samodzielnie, używamy pamięci to przechowywania najważniejszych informacji. Ale gdy możemy użyć zewnętrznego urządzenia, najważniejsze informacje są na nim zapisywane, a naszą własną pamięć wykorzystujemy do zapamiętania tych mniej ważnych, mówi doktor Sam Gilbert.
      Uczony zauważa, że – wbrew obawom – urządzenia elektroniczne nie wywołują „cyfrowej demencji”, ale przyczyniają się do lepszego zapamiętywania informacji, których na nich nie zapisaliśmy. Musimy jednak ostrożnie przechowywać nasze najważniejsze dane. Gdy bowiem urządzenie elektroniczne zawiedzie, może się okazać, że w naszej pamięci zostały nam tylko i wyłącznie mniej ważne informacje, ostrzega uczony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dla większości kupujących aparat fotograficzny to, obok baterii, jeden z najważniejszych elementów smartfona. Jakość uzyskanych zdjęć oraz filmów jest istotna, a na obecnym poziomie zaawansowania technologii, nawet stosunkowo niedrogie telefony oferują bardzo dobre możliwości.
      Xiaomi jest marką, która stara się zadowolić swoich klientów, nie tylko tych nabywających smartfony klasy Premium, ale również modele budżetowe. Dlatego użytkownicy urządzeń Xiaomi mogą liczyć na dobrej jakości zdjęcia, wydając na telefon nawet mniej niż 1000 zł.
      Redmi Note 9 Pro - świetny aparat w dobrym smartfonie za niewysoką cenę
      Xiaomi Redmi Note 9 Pro zaopatrzony został w aż 4 obiektywy na tylnym panelu oraz oczywiście aparat do selfie (16 Mpix ze światłem 2.5) z przodu. Bazowy obiektyw ma 64 Mpix i światło 1.9, natomiast towarzyszący mu szerokokątny ma 8 Mpix i 119 stopniowe pole widzenia oraz światło 2.2. Kolejnym obiektywem jest 5 Mpix macro ze światłem 2.4 pozwalający na wykonywanie zdjęć z bliskiej odległości oraz rejestrator głębi 2 Mpix. Całość uzupełnia pojedyncza dioda doświetlająca ulokowana poniżej wysepki z aparatami na „pleckach” smartfona.
      Użytkownicy Redmi Note 9 Pro chwalą aparat główny za naturalnie wyglądające zdjęcia o dobrym odzwierciedleniu kolorów, a także za możliwość rejestrowania filmów w rozdzielczości 4K (z prędkością 30 klatek na sekundę). Nagrywanie „z ręki” daje dobry efekt, dzięki cyfrowej stabilizacji obrazu a szybki auto focus doskonale łapie ostrość.
      Dodając do zalet aparatu pozostałe atuty Xiaomi Redmi Note 9 Pro, czyli m.in.:
      •            ośmiordzeniowy procesor Snapdrgon 720 G od Qualcomma,
      •            wysoki stopień personalizacji telefonu, dzięki nakładce MIUI 11,
      •            ciekawy design i świetną jakość wykonania obudowy,
      •            bardzo dobrze działający czytnik linii papilarnych,
      •            pojemną baterię, dzięki której telefon może pracować nawet 3 dni bez ładowania,
      otrzymujemy smartfon klasy Premium w więcej niż przystępnej cenie.
      Niedrogi i dobry smartfon z 4 obiektywami – Redmi Note 8T
      W grupie cenowej, w jakiej plasuje się smartfon Redmi Note 8T, 4 obiektywy oferuje tylko marka Xiaomi. Główna matryca ma 48 Mpix i jasność 1.8. Domyślna rozdzielczość to 12 Mpix, ale oczywiście można ją zwiększyć aż do wspomnianych 48 Mpix. Do dyspozycji użytkownika jest tryb nocny, przy pomocy którego można uzyskać naprawdę dobrej jakości zdjęcia.
      Poza aparatem głównym użytkownik skorzysta również z 8 Mpix obiektywu szerokokątnego, a także z dwóch dodatkowych. W Redmi Note 8T znajduje się 2 Mpix obiektyw macro, którym można zrobić bardzo wyraźne zdjęcia z niewielkiej odległości. Druga 2 Mpix matryca służy do pomiaru głębi.
      Xiaomi Redmi Note 8T wyposażony jest oczywiście również w aparat do selfie. 13 Mpix matryca o jasności 2.0 od razu koryguje naszą cerę, a zdjęcia wypadają naprawdę ładnie. Dobrej jakości są również filmy nakręcone za pomocą Redmi Note 8T. Oczywiście aparat nie jest jedynym atutem tego smartfona. Użytkownicy cenią go również za świetny dźwięk, a także ogólny bardzo dobry stosunek jakości do ceny.
      48 Mpix w przystępnym cenowo Xiaiomi Redmi Note 7
      Gradientowa budowa Xiaiomi Redmi Note 7 prezentuje się designersko. Z przodu i z tyłu smartfon pokryty jest szkłem Gorilla Glass 5 generacji, a jego ekran wynosi 6,3 cala oraz obsługuje rozdzielczość 2340x1080.
      Telefon może zaimponować głównym aparatem 48 Mpix. Dodatkowo jego dużym plusem jest matryca pomocnicza 5 Mpix, sztuczna inteligencja, która pomoże nam w upiększeniu zdjęcia, a także dobieranie ustawień adekwatnych do fotografowanego kadru. Przedni aparat telefonu ma 13 Mpix i robi niezłe zdjęcia selfie.
      Każdy z obiektywów działa w trybie HDR. Tylny, wyposażony jest w czujnik głębi, auto focus, a także tryb panoramiczny. Aparat tego smartfonu dorównuje niemałej ilości droższych modeli.
      Jak na swoją niewielką cenę, Redmi Note 7 jest zaopatrzony w ciekawe funkcjonalności oraz niezłej klasy podzespoły. Procesor Snapdragon 660 od Qalcomma, jest wykorzystywany w wielu droższych telefonach. Pamięć RAM wynosi 4 GB, natomiast pamięć wewnętrzna to 64 GB. Pojemność baterii w tym telefonie imponuje, podobnie jak aparat. Ogniwo ma aż 4000 mAh, a przy tym obsługuję funkcję szybkiego ładowania.
      Xiaomi Redmi Note 7 jest dobrym rozwiązaniem dla osób, które nie chcą wydawać dużej kwoty na smartfon, a oczekują dobrej jakości sprzętu w porównaniu do jego ceny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Długa ekspozycja na niebieskie światło, takie jak emitowane przez ekrany smartfonów i komputerów, może negatywnie wpływać na długość życia. Naukowcy z Oregon State University zauważyli, że niebieskie długości fali emitowane przez LED niszczą komórki w mózgu i siatkówce muszki owocówki.
      W artykule, opublikowanym na łamach Nature Aging and Mechanisms of Disease, czytamy, że muszki, które codziennie przez 12 godzin przebywały w niebieskim świetle i 12 godzin w ciemności, żyły znacznie krócej niż muszki, które były stale utrzymywane w ciemności lub stale w białym świetle z zablokowanym pasmem niebieskim. Ekspozycja dorosłych muszek na 12 godzin światła niebieskiego dziennie prowadziła do przyspieszenia starzenia się, powodując uszkodzenie komórek siatkówki, degenerację mózgu oraz upośledzała zdolności ruchowe. Uszkodzenie mózgu oraz funkcji motorycznych nie było związane z degeneracją siatkówki, gdyż zjawiska te obserwowano również u muszek, które genetycznie zmodyfikowano tak, by nie wykształcały się u nich oczy. Niebieskie światło prowadziło też do ekspresji genów stresu u starszych muszek, ale nie u młodych. To sugeruje, że zbiorcza ekspozycja na niebieskie światło działa jak czynnik stresowy w miarę starzenia się. Muszki owocówki to ważny organizm modelowy, gdyż wiele występujących u nich mechanizmów komórkowych i rozwojowych jest takich samych, jak u ludzi i innych zwierząt.
      Badania prowadził zespół pracujący pod kierunkiem profesor Jagi Giebultowicz, która specjalizuje się w badaniu zegara biologicznego. Zaskoczył nas fakt, że światło przyspiesza starzenie się muszek. Zbadaliśmy ekspresję niektórych genów u starych muszek i stwierdziliśmy, że gdy muszki są poddawane działaniu światła, to dochodzi do ekspresji genów odpowiedzialnych za ochronę organizmu. Wysunęliśmy hipotezę, że światło im szkodzi i postanowiliśmy znaleźć tego przyczynę. Okazało się, że o ile światło pozbawione pasma niebieskiego w niewielkim stopniu skraca życie, to niebieskie światło skraca je w sposób dramatyczny, mówi Giebultowicz.
      Wiadomo, że naturalne światło jest bardzo ważnym czynnikiem regulującym rytm dobowy i związane z nim procesy fizjologiczne jak aktywność fal mózgowych, produkcję hormonów, regenerację komórek. Istnieją też dowody sugerujące, że zwiększona ekspozycja na sztuczne światło jest czynnikiem zaburzającym sen i rytm całodobowy. Coraz większa obecność oświetlenia LED i ekranów powoduje, że w coraz większym stopniu jesteśmy narażeni na oddziaływanie światła niebieskiego, gdyż to właśnie spektrum jest w dużej mierze emitowane przez LED-y. Dotychczas jednak zjawiska tego nie zauważono, gdyż nawet w krajach rozwiniętych oświetlenie LED nie jest używane do wystarczająco długiego czasu, by skutki jego negatywnego oddziaływania były już widoczne w badaniach epidemiologicznych.
      Okazuje się, że muszki owocówki są mądrzejsze od ludzi. Gdy tylko mogą, unikają niebieskiego światła. Giebultowicz chce teraz sprawdzić, czy za unikanie niebieskiego światła jest odpowiedzialny ten sam szlak sygnałowy, który jest zaangażowany w długość życia owadów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W razie ataku nuklearnego bądź wypadku z udziałem materiałów rozszczepialnych, specjaliści mogą wykorzystać smartfony ofiar do określenia dawki promieniowania, jaką otrzymały.
      Jak dowiadujemy się z najnowszego numeru Radiation Measurements, ceramiczne izolatory, obecne w wielu urządzeniach elektronicznych, poddane działaniu wysokiej temperatury zaczynają emitować światło, które wskazuje na poziom promieniowania, jakiemu były w przeszłości poddane. Dzięki temu specjaliści mogą w ciągu kilku godzin określić dawkę promieniowania, jaką przyjęła osoba posiadająca przy sobie smartfon. Określenie jej z próbki krwi trwa kilka tygodni.
      Gdy ceramika w podzespołach elektronicznych zostanie poddana promieniowaniu jonizującemu, dochodzi do zmiany układu elektronów w miejscach niedoskonałości struktury krystalicznej. Po podgrzaniu takiej ceramiki do temperatury kilkuset stopni Celsjusza pojawia się promieniowanie, a długość emitowanej fali światła wskazuje na rozkład elektronów w materiale. Z tego rozkładu specjaliści mogą określić dawkę promieniowania.
      Autorzy najnowszej pracy, Robert Hayes, inżynier atomowy z North Carolina State University oraz jego kolega Ryan O'Mara, przetestowali swoją technikę określania dawki promieniowania poddając powierzchniowo montowane oporniki działaniu promieniowania o dawkach 0,005; 0,015; 0,03; 0,06; 0,125; 0,25 oraz 0,5 grejów. Testy wykazały, że nowa technika pozwala na tyle precyzyjnie określić dawkę pochłoniętą, iż można stwierdzić, czy osoba wymaga natychmiastowego leczenia. Takie leczenie jest potrzebne po wchłonięci co najmniej 1 greja. Pozwala też oszacować zwiększone ryzyko nowotworu, które rośnie po wchłonięciu dawki 0,2 grejów.
      Obecnie problem może stanowić fakt, że urządzenie do pomiaru luminescencji ceramiki kosztuje około 150 000 USD, zatem osoby, które mogły zostać napromieniowane, musiałyby wysyłać swoje urządzenia elektroniczne do wyspecjalizowanych odpowiednio wyposażonych laboratoriów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W laboratorium profesora Mikhaila Shapiro z Caltechu (California Institute of Technology), powstała metoda włączania i wyłączania poszczególnych obwodów mózgu bez potrzeby przeprowadzania interwencji chirurgicznej. W przyszłości technika ta może przydać się podczas leczenia chorób neurologicznych takich jak epilepsja czy choroba Parkinsona, związanych z nieprawidłowym działaniem szlaków sygnałowych w mózgu.
      Używając fal dźwiękowych i terapii genetycznych uzyskujemy, po raz pierwszy w historii, nieinwazyjną kontrolę nad konkretnymi obszarami mózgu i rodzajami komórek oraz uzyskujemy dostęp do informacji, kiedy neurony się włączają i wyłączają, mówi profesor Shapiro.
      Pomysł, by uzyskać wpływ na to, kiedy neurony są aktywne, a kiedy nie, nie jest nowy. Na przykład w rozwijającej się dopiero optogenetyce używa się światła do kontrolowania poszczególnych obszarów mózgu za pomocą wszczepionych światłowodów. Nowością w metodzie opracowanej przez zespół Shapiro jest wykorzystanie fal dźwiękowych. Były już one używane przez naukowców z Caltechu do obrazowania i kontroli funkcjonowania komórek wewnątrz ciała.
      Tym razem fale dźwiękowe są używane w połączeniu z małymi bąbelkami wprowadzanymi do krwi w celu czasowego otwarcia bariery krew–mózg. Gdy bąbelki są pobudzane przez fale dźwiękowe, zaczynają wibrować, a ich ruch na krótko otwiera barierę krew–mózg, wyjaśnia główny autor najnowszych badań doktor Jerzy Szablowski. Otwarcie bariery krew–mózg to pierwszy krok składającej się z 3 etapów techniki kontrolowania wybranych obszarów mózgu. Dzięki temu zespół może wykorzystać terapie genowe. Do krwi wprowadzany jest odpowiednio zmodyfikowany wirus, który przedostaje się przez barierę krew–mózg i dostarcza do wybranych komórek odpowiednie instrukcje. Instrukcje te kodują proteiny zwane chemoreceptorami, które w odpowiedni sposób reagują na leki przygotowane w laboratorium. Ostatnim etapem procesu jest podanie leków powodujących, że wybrane neurony się włączą lub wyłączą.
      Naukowcy zaprezentowali działanie swojej techniki na myszy, u której na cel wzięli neurony w hipokampie odpowiedzialne za tworzenie wspomnień. Gdy myszy podano leki wyłączające te neurony, nie była ona w stanie przez jakiś czas tworzyć nowych wspomnień.
      To odwracalna metoda, mówi Szablowski. Możesz podać leki wyłączające wybrane neurony, ale po jakimś czasie znowu się one włączą. Można też tak dobrać dawkę leku, by określić, na ile dany obszar mózgu ma zostać wyłączony, dodaje uczony.
      Nowa metoda zyskała nazwę akustycznie celowanej chemogenetyki (ATAC – acoustically targeted chemogenetics).

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...