Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Nowa, bardziej pojemna anoda

Recommended Posts

Inżynierowie z Lawrence Berkeley National Laboratory opracowali anodę dla baterii litowo-jonowych, która potrafi przechowywać do ośmiu razy więcej jonów litu niż inne tego typu urządzenia. Prowadzone przez ponad rok testy wykazały, że nowa anoda nie straciła w tym czasie zdolności do przyjmowania jonów i wytrzymała setki cykli ładowani/rozładowywania.

Kluczem do sukcesu było opracowanie nowego polimeru, który dobrze przewodzi ładunki elektryczne i wiąże je z cząsteczkami krzemu. Anodę stworzono z tanich materiałów, jej koszt jest porównywalny z kosztem anody w obecnie używanych bateriach.

Gao Liu z LBNL zauważył, że sporym problemem dla konstruktorów anod było zwiększanie się objętości materiału podczas przyjmowania jonów i jego kurczenie się w miarę rozładowywania baterii. Większość dzisiejszych baterii litowo-jonowych ma anody zbudowane z grafitu, który tylko umiarkowanie zwiększa swoją objętość podczas przechowywania jonów. Krzem może przechowywać ich 10-krotnie więcej, ma największą pojemność ze znanych nam materiałów wykorzystywanych do budowy baterii litowo jonowych. Jednak problem w tym, że aż trzykrotnie zwiększa on swoją objętość - mówi Liu. Tak znaczna zmiana objętości powoduje zaś przerwanie połączeń elektrycznych. Dlatego też wielu naukowców z całego świata stara się opracować krzemową anodę, która z jednej strony będzie bardzo pojemna, a z drugiej - podczas pracy nie dojdzie do przerwania połączeń. Zaproponowano już kilka rozwiązań, w tym i niezwykle kosztowne pomysły.

Jeden z tanich pomysłów polegał na mieszaniu cząsteczek krzemu z elastycznym polimerem oraz dodawanie sadzy, która miała odpowiadać za przewodzenie prądu. Niestety okazało się, że wielokrotne puchnięcie i chudnięcie krzemu powoduje wytrącenie cząsteczek węgla z mieszaniny.

Naukowcy doszli do wniosku, że trzeba wykorzystać elastyczny polimer, który sam potrafi przewodzić prąd. Oczywiście przewodzące polimery istnieją nie od dzisiaj, jednak nie tworzono ich z myślą o wykorzystaniu w bateriach, nic zatem dziwnego, że ulegały one zniszczeniu lub traciły swoje właściwości po umieszczeniu w tego typu urządzeniach.

Liu i Shidi Xun postanowili wykorzystać polimery bazujące na polifluorenie (PF). Eksperymentowali z różnymi składami polimeru i badali za pomocą mikroskopu elektronowego to, co dzieje się z materiałem. Opracowali w końcu taki PF, który nie tylko wykazuje pożądane właściwości, ale jest przy okazji tani i łatwy w produkcji. Jest on również kompatybilny z istniejącymi technikami produkcyjnymi, dzięki czemu, jak poinformował Liu, już spotkał się z zainteresowaniem dużych firm.

Pomimo optymistycznych wieści musimy pamiętać, że anoda jest tylko jednym z kilku elementów baterii, które wymagają znacznego udoskonalenia.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Na Northwestern University powstała nowa anoda dla akumulatorów litowo-jonowych. Umożliwia ona przechowywanie 10-krotnie więcej ładunku niż obecne elektrody, a sam akumulator można załadować 10-krotnie szybciej.
      Odkryliśmy sposób na dziesięciokrotne wydłużenie życia baterii litowo-jonowej. Nawet po 150 cyklach ładowania/rozładowywania, co zajmie rok lub więcej, nasz akumulator będzie pięciokrotnie bardziej wydajny niż współcześnie stosowane rozwiązania - mówi profesor Harold H. Kung.
      Współczesne baterie litowo-jonowe działają dzięki przesyłaniu jonów litu pomiędzy dwoma elektrodami - anodą i katodą. Gdy używamy energii, jony litu przemieszczają się z anody, przez elektrolit, do katody. Gdy ładujemy akumulator, podróż odbywa się w odwrotną stronę.
      Obecnie wydajność akumulatorów Li-Ion jest ograniczona dwoma czynnikami. Ich pojemność zależy od tego, jak wiele jonów litu może przechować anoda lub katoda. Z kolei prędkość rozładowywania, a zatem dostarczania energii, zależy od prędkości przemieszczana się jonów pomiędzy elektrolitem a anodą.
      We współczesnych akumulatorach anoda wykonana jest z węgla i na każde 6 jego atomów przechowuje jeden atom litu. Eksperymentowano z zastąpieniem węgla krzemem, który ma większą pojemność, gdyż przechowuje atom litu na każde 4 atomy krzemu. Jednak podczas pracy krzem znacznie zmienia swoje rozmiary, co prowadzi do uszkodzenia elektrody i spadku pojemności baterii.
      Ponadto poszczególne warstwy węgla w elektrodzie są bardzo cienkie, jednak długie. Podczas procesu ładowania każdy jon musi przebyć całą drogę od krawędzi by dotrzeć do kolejnych warstw. To zajmuje sporo czasu, a ponadto powoduje, że na krawędziach powstaje „korek" z jonów oczekujących na możliwość wyruszenia w drogę.
      Zespół Kunga postanowił za jednym zamachem rozwiązać oba problemy. Po pierwsze warstwy krzemu poprzedzielał warstwami węgla. Mamy dzięki temu znacznie większą pojemność energii, gdyż wykorzystaliśmy krzem, a jego poprzedzielanie zmniejszyło straty pojemności spowodowane rozszerzaniem się i kurczeniem krzemu - wyjaśnia Kung. Uczeni wykorzystali też proces utleniania do uzyskania niewielkich (10x20 nanometrów) dziur w warstwach węgla. Dziury te tworzą skróty, dzięki którym jony litu nie muszą podróżować przez całą warstwę. Pozwoliło to na 10-krotne skrócenie czasu ładowania baterii.
      Po udoskonaleniu anody uczeni chcą zająć się pracami nad katodą. Mają też zamiar opracować nowy elektrolit, który będzie powodował, że w wysokich temperaturach akumulator automatycznie przerwie pracę, dzięki czemu będzie bezpieczniejszy w użytkowaniu.
      Technologia Kunga i jego zespołu powinna trafić na rynek w ciągu 3-5 lat.
    • By KopalniaWiedzy.pl
      Sol Cinema to kino w całości zasilane energią słoneczną. To w zasadzie minikino, ponieważ wygodnie pomieści się w nim 8 dorosłych bądź 12 dzieci.
      Właściciele wyświetlają za darmo krótkie filmy o tematyce ekologicznej, komedie i muzyczne teledyski. Za popcorn trzeba już zapłacić. Dodatkowymi atrakcjami są iście gwiazdorskie wejście po czerwonym dywanie oraz obsługa starannie wystylizowanej bileterki.
      Dwa 120-watowe panele ładują cztery baterie litowo-jonowe, takie jak akumulatory wykorzystywane w samochodach elektrycznych. Kino to wyremontowana dzięki wsparciu finansowemu organizacji charytatywnej Undercurrents przyczepa kempingowa z lat 60. Za głównego projektanta i konstruktora należy uznać Jo Furlonga. Pomagały mu Ami i Beth Marsden. Dzięki nim Sol Cinema działa nieprzerwanie od 2009 r. Twórcy wynajmują kino na imprezy organizowane na terenie Wielkiej Brytanii oraz Irlandii. Zapewniają lokum, projektor z wbudowanymi diodami LED oraz dobrą zabawę dla widzów w każdym wieku.
       
      http://www.youtube.com/watch?v=Ye8gs1MN-eM
    • By KopalniaWiedzy.pl
      Najnowsze badania przeprowadzone na Massachusetts Institute of Technology wskazują, że sprężyny wykonane z węglowych nanorurek mogą przechowywać tysiąc razy więcej energii niż sprężyny stalowe. Ich zdolność magazynowania energii, w przeliczeniu na jednostkę wagi, jest równa możliwościom najnowocześniejszych baterii litowo-jonowych.
      Oznacza to, że w przyszłości mogą powstać liczne urządzanie napędzane za pomocą sprężyn, które sprawdzą się m.in. tam, gdzie baterie litowo-jonowe są mało przydatne. Wyobraźmy sobie np. ręczne odkurzacze do liści, które nie powodują hałasu i nie trzeba w nie wlewać benzyny czy też urządzenia opuszczane do odwiertów geologicznych i wykonujące swoje zadania w warunkach, w których baterie litowo-jonowe ulegają szybkiej degradacji.
      Profesor Carol Livermore i jej zespół opublikowali dwie prace dotyczące możliwości nanorurkowych sprężyn. W lipcu ukazał się teoretyczny artykuł, który rozważał potencjał drzemiący w tego typu urządzeniach. Teraz w Journal of Micromechanics and Microengineering pani profesor opisuje wyniki testów laboratoryjnych, które potwierdziły wcześniejsze teorie.
      Livermore zauważa, że w wielu zastosowaniach sprężyny przewyższają możliwości baterii. Mogą one bowiem, w przeciwieństwie do baterii, dostarczać energię bardzo szybko lub bardzo powoli. Kolejna ich zaleta to fakt, że energia z nich nie ucieka. W sprężynie może być ona przechowywana całymi latami, w baterii jest to niemożliwe. To z kolei oznacza, że sprężyny lepiej nadają się np. do awaryjnych systemów zasilania, które całymi miesiącami czy latami pozostają bezczynne. W przypadku baterii konieczne jest regularne kontrolowanie poziomu ich naładowanie oraz wymiana lub doładowywanie urządzeń. Ponadto węglowe nanorurki są słabo podatne na działanie czynników zewnętrznych, mogą więc pracować w bardzo różnych warunkach. Mogą więc być stosowane np. w przestrzeni kosmicznej, gdzie zostaną poddane bardzo niskim i bardzo wysokim temperaturom.
      Zdaniem pani profesor, nanorurkowe sprężyny najpierw pojawią się w dużych urządzeniach i będą przechowywały energię mechaniczną oraz ją oddawały, a nie zamieniały ją w elektryczną. Zamiana rodzajów energii wiąże się bowiem z ich niepotrzebną stratą. Taki system może np. przydać się w rowerach, gdzie podczas hamowania w czasie zjazdu z górki sprężyna będzie nakręcana, a zmagazynowaną energię rowerzysta będzie mógł wykorzystać podjeżdżając pod górę. Jest to z pewnością rozwiązanie bardziej efektywne niż systemy stosowane w pojazdach hybrydowych, gdzie energia mechaniczna pozyskiwana podczas hamowania jest zamieniana na energię elektryczną doładowującą baterie, a następnie odzyskiwana do napędzania silnika. Mamy tu zatem do czynienia z dwukrotną konwersją energii. W systemie czysto mechanicznym konwersja nie zachodzi.
      Wyprodukowanie odpowiednio długich nanorurek, z których będzie można produkować sprężyny, nie powinno być problemem, gdyż poszczególne molekuły mają bardzo silną tendencję do przyczepiania się, co ułatwia tworzenie z nich długich włókien.
      Uczeni z MIT-u przyznają jednak, że minie jeszcze sporo czasu, zanim na rynek trafią pierwsze urządzenia z nanorurkowymi sprężynami. Naukowcy muszą m.in. opracować technologie masowej produkcji tanich nanorurkowych materiałów.
    • By KopalniaWiedzy.pl
      Hitachi informuje o powstaniu najbardziej wydajnej baterii litowo-jonowej dla samochodów elektrycznych. Nowe urządzenie zapewnia 1,7 razy więcej mocy i jest przy tym lżejsze i mniejsze niż obecnie sprzedawane baterie.

      Gęstość mocy nowej baterii wynosi 4500 watów na kilogram. Gęstość taką udało się osiągnąć dzięki nowej katodzie zawierającej mangan oraz nowej architekturze samej baterii, która korzysta z cieńszych elektrod i nowej metody ładowania.
      Obecnie w ofercie Hitachi znajdują się baterie o gęstości 2600 W/kg. Są one używane w przemyśle motoryzacyjnym oraz kolejowym. W 2010 roku japońska firma rozpocznie masową produkcję baterii trzeciej generacji, która zapewnia gęstość rzędu 3000 W/kg.
      Próbki najnowszej, czwartej już generacji baterii, trafią do partnerów Hitachi jesienią bieżącego roku. Japończycy nie zdradzają, kiedy ich najnowszy produkt pojawi się na rynku.
    • By KopalniaWiedzy.pl
      W ciągu ostatnich dwóch lat media często donosiły o problemach z bateriami litowo-jonowymi, które były przyczyną częstych pożarów, zwarć a nawet eksplozji sprzętu elektronicznego. Japoński gigant NTT DoCoMo znalazł sposób na wadliwe urządzenia. Firma pokazała "inteligentne" baterie do telefonów komórkowych.
      Baterie wyposażono w 8-bitowy mikroprocesor, który monitoruje ich stan. Sprawdza on i zapisuje dane dotyczące napięcia, natężenia, temperatury, pojawiających się usterek i zużycia urządzeń. Informuje też użytkownika o stopniu naładowania baterii. Informacje są przechowywane w samych bateriach, więc przełożenie ich do innego urządzenia nie powoduje utraty danych. Baterie potrafią również zaalarmować użytkownika o problemach, poradzić mu by je wymienił na nowe lub oddał do naprawy.
      Nowe baterie mają trafić na rynek w ciągu najbliższych 12 miesięcy.
×
×
  • Create New...