Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Najnowsze badania przeprowadzone na Massachusetts Institute of Technology wskazują, że sprężyny wykonane z węglowych nanorurek mogą przechowywać tysiąc razy więcej energii niż sprężyny stalowe. Ich zdolność magazynowania energii, w przeliczeniu na jednostkę wagi, jest równa możliwościom najnowocześniejszych baterii litowo-jonowych.

Oznacza to, że w przyszłości mogą powstać liczne urządzanie napędzane za pomocą sprężyn, które sprawdzą się m.in. tam, gdzie baterie litowo-jonowe są mało przydatne. Wyobraźmy sobie np. ręczne odkurzacze do liści, które nie powodują hałasu i nie trzeba w nie wlewać benzyny czy też urządzenia opuszczane do odwiertów geologicznych i wykonujące swoje zadania w warunkach, w których baterie litowo-jonowe ulegają szybkiej degradacji.

Profesor Carol Livermore i jej zespół opublikowali dwie prace dotyczące możliwości nanorurkowych sprężyn. W lipcu ukazał się teoretyczny artykuł, który rozważał potencjał drzemiący w tego typu urządzeniach. Teraz w Journal of Micromechanics and Microengineering pani profesor opisuje wyniki testów laboratoryjnych, które potwierdziły wcześniejsze teorie.

Livermore zauważa, że w wielu zastosowaniach sprężyny przewyższają możliwości baterii. Mogą one bowiem, w przeciwieństwie do baterii, dostarczać energię bardzo szybko lub bardzo powoli. Kolejna ich zaleta to fakt, że energia z nich nie ucieka. W sprężynie może być ona przechowywana całymi latami, w baterii jest to niemożliwe. To z kolei oznacza, że sprężyny lepiej nadają się np. do awaryjnych systemów zasilania, które całymi miesiącami czy latami pozostają bezczynne. W przypadku baterii konieczne jest regularne kontrolowanie poziomu ich naładowanie oraz wymiana lub doładowywanie urządzeń. Ponadto węglowe nanorurki są słabo podatne na działanie czynników zewnętrznych, mogą więc pracować w bardzo różnych warunkach. Mogą więc być stosowane np. w przestrzeni kosmicznej, gdzie zostaną poddane bardzo niskim i bardzo wysokim temperaturom.

Zdaniem pani profesor, nanorurkowe sprężyny najpierw pojawią się w dużych urządzeniach i będą przechowywały energię mechaniczną oraz ją oddawały, a nie zamieniały ją w elektryczną. Zamiana rodzajów energii wiąże się bowiem z ich niepotrzebną stratą. Taki system może np. przydać się w rowerach, gdzie podczas hamowania w czasie zjazdu z górki sprężyna będzie nakręcana, a zmagazynowaną energię rowerzysta będzie mógł wykorzystać podjeżdżając pod górę. Jest to z pewnością rozwiązanie bardziej efektywne niż systemy stosowane w pojazdach hybrydowych, gdzie energia mechaniczna pozyskiwana podczas hamowania jest zamieniana na energię elektryczną doładowującą baterie, a następnie odzyskiwana do napędzania silnika. Mamy tu zatem do czynienia z dwukrotną konwersją energii. W systemie czysto mechanicznym konwersja nie zachodzi.

Wyprodukowanie odpowiednio długich nanorurek, z których będzie można produkować sprężyny, nie powinno być problemem, gdyż poszczególne molekuły mają bardzo silną tendencję do przyczepiania się, co ułatwia tworzenie z nich długich włókien.

Uczeni z MIT-u przyznają jednak, że minie jeszcze sporo czasu, zanim na rynek trafią pierwsze urządzenia z nanorurkowymi sprężynami. Naukowcy muszą m.in. opracować technologie masowej produkcji tanich nanorurkowych materiałów.

Share this post


Link to post
Share on other sites

Użycie tego w samochodach byłoby nawet lepszym pomysłem niż sprężone powietrze (które już teraz przewyższa elektryki), ciekawe tylko jakie wyjdą proporcje zmagazynowanej energii do masy, no i cena...

Share this post


Link to post
Share on other sites

Pozostaje tylko kwestia nakręcania takich sprężyn samochodowych. Jedynym możliwym sposobem byłoby zapewne nakręcanie za pomocą prądu. No, ale i tak mielibyśmy do czynienia z jednokrotną konwersją elektryki do mechaniki.

Share this post


Link to post
Share on other sites

Nawet gdyby ładowanie odbywało się z wykorzystaniem prądu, moglibyśmy stworzyć auto równie wydajne, co model oparty na bateriach, ale jednocześnie przyjazny środowisku ze względu na brak konieczności wykorzystywania wielu chemikaliów (chociaż kto wie, czego używa się do syntezy nanorurek i na ile bezpieczny jest to proces).

Share this post


Link to post
Share on other sites

Myślę, że można by po prostu sprzedawać gotowe nakręcone kartridże ;) Wrzucałoby się takie cudo do bagażnika i wyciągało zawleczkę, a w rozliczeniu zostawiało starą sprężynę :P

Share this post


Link to post
Share on other sites

Ciekawe, jaki patent znaleźliby polscy tunerzy o szerokich karkach, żeby zwiększyć moc swoich sprężyn ;)

Share this post


Link to post
Share on other sites

Taka sprężyna nawet jako źródło prądu miałaby też pewną zaletę. Czas nakręcania sprężyny przy dostarczeniu odpowiednio dużej energii byłby znacznie krótszy niż ładowanie baterii/akumulatorów. Baterii czy aku nie można ładować wielkimi prądami, bo powoduje to ich szybkie zniszczenie. Także im większy prąd ładowania tym mniejsza sprawność tego procesu. W przypadku sprężyny można by było dostarczyć jednorazowo znaczną energię (np elektryczną i nakręcać silnikiem w samym urządzeniu) lub mechaniczną (np zewnętrzny silnik wpinany w odpowiednie gniazdo) i w bardzo krótkim czasie "naładować" urządzenie.

Share this post


Link to post
Share on other sites

Znaleźli rzeczywiście niesamowite zastosowanie :P Najfajniej, jeśli dało by się zrobić tak, żeby urządzenia przenośne (telefony, czy na przykład repliki asg - to mi najbardziej przyszło do głowy :D) mogły być w razie wyczerpania energii nakręcane ręcznie.. Fakt że wydajność energetyczna człowieka to tylko 25%, więc korzystniej pewnie ładować prądem, no ale w awaryjnej sytuacji możliwość natychmiastowego 'doładowania' jest bezcenna ;)

Share this post


Link to post
Share on other sites

@lucky_one: z ASG to ciekawy pomysł, ale obawiam się, że ciężko by było otrzymać takie prądy jak w wysokoprądowych ogniwach używanych do produkcji akumulatorów do AEGów. Silnik w AEGu pobiera przed samym zwolnieniem sprężyny tłoka naprawdę spory prąd. Wątpie, żeby prądnica napędzana przez rozprężanie takiej nanorurkowej sprężyny było w stanie dostarczyć takiego prądu przy tak małych gabarytach (powinno się to zmieścić w body repliki) i bez opóźnień po wciśnięciu spustu.

 

Jak chcesz szybko ładować replikę, to zamiast AEG lepiej kupić coś gazowego (najlepiej z blowbackiem). Niestety gazowe repliki broni długiej są koszmarnie drogie ;).

 

Sprężyny nanorurkowe w połączeniu z prądnicami miałyby zastosowanie w miejscu, gdzie rozprężanie następuje powoli (np cały dzień, lub 2 dni), a nakręcenie możliwe jest w ciągu kilku(nastu) sekund.

Share this post


Link to post
Share on other sites

nie wiem dlaczego sądzicie ze energię mechaniczną trzeba zmienić w elektryczną żeby znowu zrobić z tego mechaniczną... przecież sprężyna w asg mogłaby bezpośrednio być naciągana taką sprężyną nanurorkową... bez jakiejkolwiek elektryki

 

tak samo ładowanie w samochodach... wał silnika się kręci, koła się kręcą... wiec dlaczego by tych obrotów nie przekazać po prostu do nakręcania sprężyny? bez jakiegokolwiek prądu...

Share this post


Link to post
Share on other sites

No właśnie o czymś takim myślałem.. Aczkolwiek właśnie nie wiem czy jest to możliwe do realizacji. W asg faktycznie jest specyczny reżim pracy mechanizmu.. Ale może jest to możliwe - poczekamy, zobaczymy ;)

Share this post


Link to post
Share on other sites

nawet ja bym umiał zaprojektować taki mechanizm który by działał w asg... ale oczywiście przyjdzie ktoś kto zrobi to samo z mniejsza ilość strat energii... mniejsza ilością części... tańsze łatwiejsze i bardziej bezawaryjne a ja będę się dziwił że sam na to nie wpadłem... ;)

Share this post


Link to post
Share on other sites

Już niedługo czekać będą na nas całe sklepy z ubiorem z nanorurek ? Energię z butów wytwarzaną przy chodzeniu, czy energię wytwarzaną przy zginaniu różnych kawałków ubioru (choćby w łokciach i kolanach) będą przekazywać do rozmieszczonych tu i ówdzie sprężynek, po to tylko aby wykorzystać ją później... Do zasilania telefonu, aparatu, roweru, lampki nocnej - czegokolwiek co by tylko miało możliwość podpięcia tych sprężystych cudeniek ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Eksperci z Rocky Mountain Institute opublikowali raport, z którego dowiadujemy się, że koszty produkcji energii z węgla osiągnęły punkt zwrotny i obecnie energia ta na większości rynków przegrywa konkurencję cenową z energią ze źródeł odnawialnych. Z analiz wynika, że już w tej chwili koszty operacyjne około 39% wszystkich światowych elektrowni węglowych są wyższe niż koszty wybudowania od podstaw nowych źródeł energii odnawialnej.
      Sytuacja ekonomiczna węgla będzie błyskawicznie się pogarszała. Do roku 2025 już 73% elektrowni węglowych będzie droższych w utrzymaniu niż budowa zastępujących je odnawialnych źródeł energii. Autorzy raportu wyliczają, że gdyby nagle cały świat podjął decyzję o wyłączeniu wszystkich elektrowni węglowych i wybudowaniu w ich miejsce odnawialnych źródeł energii, to przeprowadzenie takiej operacji stanie się opłacalne już za dwa lata.
      Szybsze przejście od węgla do czystej energii jest w zasięgu ręki. W naszym raporcie pokazujemy, jak przeprowadzić taką zmianę, by z jednej strony odbiorcy energii zaoszczędzili pieniądze, a z drugiej strony, by pracownicy i społeczności żyjące obecnie z energii węglowej mogli czerpać korzyści z energetyki odnawialnej, mówi Paul Bodnar, dyrektor Rocky Mountain Institute.
      Autorzy raportu przeanalizowali sytuację ekonomiczną 2472 elektrowni węglowych na całym świecie. Wzięli też pod uwagę koszty wytwarzania energii ze źródeł odnawialnych oraz jej przechowywania. Na podstawie tych danych byli w stanie ocenić opłacalność energetyki węglowej w 37 krajach na świecie, w których zainstalowane jest 95% całej światowej produkcji energii z węgla. Oszacowali też koszty zastąpienia zarówno nieopłacalnej obecnie, jak o opłacalnej, energetyki węglowej przez źródła odnawialne.
      Z raportu dowiadujmy się, że gdyby na skalę światową zastąpić nieopłacalne źródła energii z węgla źródłami odnawialnymi, to w bieżącym roku klienci na całym świecie zaoszczędziliby 39 miliardów USD, w 2022 roczne oszczędności sięgnęłyby 86 miliardów, a w roku 2025 wzrosłyby do 141 miliardów. Gdyby jednak do szacunków włączyć również opłacalne obecnie elektrownie węglowe, innymi słowy, gdybyśmy chcieli już teraz całkowicie zrezygnować z węgla, to tegoroczny koszt netto takiej operacji wyniósłby 116 miliardów USD. Tyle musiałby obecnie świat zapłacić, by już teraz zrezygnować z generowania energii elektrycznej z węgla. Jednak koszt ten błyskawicznie by się obniżał. W roku 2022 zmiana taka nic by nie kosztowała (to znaczy koszty i oszczędności by się zrównoważyły), a w roku 2025 odnieślibyśmy korzyści finansowe przekraczające 100 miliardów dolarów w skali globu.
      W Unii Europejskiej już w tej chwili nieopłacalnych jest 81% elektrowni węglowych. Innymi słowy, elektrownie te przeżywałyby kłopoty finansowe, gdyby nie otrzymywały dotacji z budżetu. Do roku 2025 wszystkie europejskie elektrownie węglowe będą przynosiły straty. W Chinach nieopłacalnych jest 43% elektrowni węglowych, a w ciągu najbliższych 5 lat nieopłacalnych będzie 94% elektrowni węglowych. W Indiach zaś trzeba dopłacać obecnie do 17% elektrowni, a w roku 2025 nieopłacalnych będzie 85% elektrowni.
      Co ważne, w swoich wyliczeniach dotyczących opłacalności elektrowni węglowych analitycy nie brali pod uwagę zdrowotnych i środowiskowych kosztów spalania węgla.
      Energia węglowa szybko staje się nieopłacalna i to nie uwzględniając kosztów związanych z prawem do emisji i regulacjami odnośnie zanieczyszczeń powietrza. Zamknięcie elektrowni węglowych i zastąpienie ich tańszymi alternatywami nie tylko pozwoli zaoszczędzić pieniądze konsumentów i podatników, ale może też odegrać znaczną rolę w wychodzeniu gospodarki z kryzysu po pandemii, mówi Matt Gray stojący na czele Carbon Tracker Initiative.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Uniwersytecie w Glasgow po raz pierwszy eksperymentalnie potwierdzono teorię dotyczącą pozyskiwania energii z czarnych dziur. W 1969 roku wybitny fizyk Roger Penrose stwierdził, że można wygenerować energię opuszczając obiekt do ergosfery czarnej dziury. Ergosfera to zewnętrzna część horyzontu zdarzeń. Znajdujący się tam obiekt musiałby poruszać się szybciej od prędkości światła, by utrzymać się w miejscu.
      Penrose przewidywał, że w tym niezwykłym miejscu w przestrzeni obiekt nabyłby ujemną energię. Zrzucając tam obiekt i dzieląc go na dwie części tak, że jedna z nich wpadnie do czarnej dziury, a druga zostanie odzyskana, spowodujemy odrzut, który będzie mierzony wielkością utraconej energii negatywnej, a to oznacza, że odzyskana część przedmiotu zyska energię pobraną z obrotu czarnej dziury. Jak przewidywał Penrose, trudności inżynieryjne związane z przeprowadzeniem tego procesu są tak wielkie, że mogłaby tego dokonać jedynie bardzo zaawansowana obca cywilizacja.
      Dwa lata później znany radziecki fizyk Jakow Zeldowicz uznał, że teorię tę można przetestować w prostszy, dostępny na Ziemi sposób. Stwierdził, że „skręcone” fale światła uderzające o powierzchnię obracającego się z odpowiednią prędkością cylindra zostaną odbite i przejmą od cylindra dodatkową energię. Jednak przeprowadzenie takiego eksperymentu było, i ciągle jest, niemożliwe ze względów inżynieryjnych. Zeldowicz obliczał bowiem, że cylinder musiałby poruszać się z prędkością co najmniej miliarda obrotów na sekundę.
      Teraz naukowcy z Wydziału Fizyki i Astronomii University of Glasgow opracowali sposób na sprawdzenie teorii Penrose'a. Wykorzystali przy tym zmodyfikowany pomysł Zeldowicza i zamiast "skręconych" fal światła użyli dźwięku, źródła o znacznie niższej częstotliwości, i łatwiejszego do użycia w laboratorium.
      Na łamach Nature Physics Brytyjczycy opisali, jak wykorzystali zestaw głośników do uzyskania fal dźwiękowych, skręconych na podobieństwo fal świetlnych w pomyśle Zeldowicza. Dźwięk został skierowany w stronę obracającego się piankowego dysku, który go absorbował. Za dyskiem umieszczono zestaw mikrofonów, które rejestrowały dźwięk przechodzący przez dysk, którego prędkość obrotowa była stopniowo zwiększana.
      Naukowcy stwierdzili, że jeśli teoria Penrose'a jest prawdziwa, to powinni odnotować znaczącą zmianę w częstotliwości i amplitudzie dźwięku przechodzącego przez dysk. Zmiana taka powinna zajść w wyniku efektu Dopplera.
      Z liniową wersją efektu Dopplera wszyscy się zetknęli słysząc syrenę karetki pogotowia, której ton wydaje się rosnąć w miarę zbliżania się pojazdu i obniżać, gdy się on oddala. Jest to spowodowane faktem, że gdy pojazd się zbliża, fale dźwiękowe docierają do nas coraz częściej, a gdy się oddala, słyszymy je coraz rzadziej. Obrotowy efekt Dopplera działa podobnie, jednak jest on ograniczony do okrągłej przestrzeni. Skręcone fale dźwiękowe zmieniają ton gdy są mierzone z punktu widzenia obracającej się powierzchni. Gdy powierzchnia ta obraca się odpowiednio szybko z częstotliwością dźwięku dzieje się coś dziwnego – przechodzi z częstotliwości dodatniej do ujemnej, a czyniąc to pobiera nieco energii z obrotu powierzchni, wyjaśnia doktorantka Marion Cromb, główna autorka artykułu.
      W miarę jak rosła prędkość obrotowa obracającego się dysku, ton dźwięku stawał się coraz niższy, aż w końcu nie było go słychać. Później znowu zaczął rosnąć, aż do momentu, gdy miał tę samą wysokość co wcześniej, ale był głośniejszy. Jego amplituda była o nawet 30% większa niż amplituda dźwięku wydobywającego się z głośników.
      To co usłyszeliśmy podczas naszych eksperymentów było niesamowite. Najpierw, w wyniku działania efektu Dopplera częstotliwość fal dźwiękowych zmniejszała się w miarę zwiększania prędkości obrotowej dysku i spadła do zera. Później znowu pojawił się dźwięk. Stało się tak, gdyż doszło do zmiany częstotliwości fal z dodatniej na ujemną. Te fale o ujemnej częstotliwości były w stanie pozyskać część energii z obracającego się dysku i stały się głośniejsze. Zaszło zjawisko, które Zeldowicz przewidział w 1971 roku, dodaje Cromb.
      Współautor badań, profesor Daniele Faccio, stwierdza: jesteśmy niesamowicie podekscytowani faktem, że mogliśmy eksperymentalnie potwierdzić jedną z najdziwniejszych hipotez fizycznych pół wieku po jej ogłoszeniu. I że mogliśmy potwierdzić teorię dotyczącą kosmosu w naszym laboratorium w zachodniej Szkocji. Sądzimy, że otwiera to drogę do kolejnych badań. W przyszłości chcielibyśmy badać ten efekt za pomocą różnych źródeł fal elektromagnetycznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Często i mało, czy rzadko, ale do syta? Gdyby chodziło o dietę, większość specjalistów postawiłaby na odpowiedź 1, ale w przypadku magazynowania energii jest odwrotnie. Okazuje się, że więcej można jej zmieścić ładując rzadko, ale do pełna.Taki przynajmniej wniosek płynie z badań przeprowadzonych przez zespół naukowców IChF PAN.
      Doświadczenia dotyczyły co prawda wyidealizowanych, dwuwymiarowych układów sieciowych, ale w końcu zasada to zasada. Dr Anna Maciołek, jedna z autorów pracy opublikowanej w Physical Review opisuje ją tak: Chcieliśmy zbadać, jak zmienia się sposób magazynowania energii w układzie,  gdy  pompujemy  do  niego  energię  w  postaci  ciepła,  innymi  słowy – lokalnie  go podgrzewamy.
      Wiadomo,  że ciepło  w  układach  się  rozprzestrzenia, dyfunduje.  Ale czy na gromadzenie energii ma wpływ sposób jej dostarczania; fachowo mówiąc „geometria podawania”? Czy ma znaczenie, że podajemy dużo energii w krótkim czasie i potem długo nic, i znowu dużo energii, czy też gdy podajemy malutkie porcje  tej energii, ale za to jedna po drugiej, niemal bez przerw?
      Cykliczne podawanie energii jest bardzo powszechne w naturze. Sami dostarczamy jej sobie w ten sposób, jedząc. Tę samą liczbę kalorii można dostarczyć w jednej lub dwóch dużych porcjach zjadanych w ciągu doby, albo rozbić ją na 5-7 mniejszych posiłków, między którymi są krótsze przerwy. Naukowcy wciąż się spierają, który  sposób jest dla organizmu lepszy. Jeśli jednak  chodzi o dwuwymiarowe układy sieciowe, to już wiadomo, że pod względem efektywności magazynowania wygrywa metoda „rzadko a dużo”.
      Zauważyliśmy, że w zależności od tego, w jakich porcjach i jak często podajemy energię, ilość, jaką układ potrafi zmagazynować, zmienia się. Największa jest wtedy, gdy porcje energii są duże, ale odstępy czasowe między ich podaniem też są długie, wyjaśnia Yirui Zhang, doktorantka w IChF PAN. Co ciekawe, okazuje się, że gdy taki układ magazynujący podzielimy wewnętrznie na swego rodzaju przedziały, czy też komory, to ilość energii możliwej do zmagazynowania w takim podzielonym ‘akumulatorze’ – o ile bylibyśmy go w stanie skonstruować – wzrośnie. Innymi słowy, trzy małe baterie zmagazynują więcej energii niż jedna duża, precyzuje badaczka. Wszystko to przy założeniu, że całkowita ilość wkładanej do układu energii jest taka sama, zmienia się tylko sposób jej dostarczania.
      Choć badania prowadzone przez zespół IChF PAN należą do podstawowych i ukazują po prostu fundamentalną  zasadę  rządzącą magazynowaniem energii w magnetykach, ich potencjalne zastosowania  są  nie do  przecenienia.  Wyobraźmy  sobie  np.  możliwość  ładowania  baterii elektrycznego samochodu nie w kilka godzin, lecz w kilkanaście minut albo znaczące zwiększenie pojemności  takich  akumulatorów  bez  zmiany  ich  objętości,  czyli  wydłużenie  zasięgu  auta  na jednym ładowaniu.  Nowe  odkrycie  może  też  w  przyszłości  zmienić  sposoby  ładowania  baterii różnego typu poprzez ustalenie optymalnej periodyczności dostarczania do nich energii

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jednym ze sposobów na pozyskiwanie odnawialnej energii jest wykorzystanie różnicy chemicznych pomiędzy słodką i słoną wodą. Jeśli naukowcom uda się opracować metodę skalowania stworzonej przez siebie technologii, będą mogli dostarczyć olbrzymią ilość energii milionom ludzi mieszkających w okolica ujścia rzek do mórz i oceanów.
      Każdego roku rzeki na całym świecie zrzucają do oceanów około 37 000 km3 wody. Teoretycznie można tutaj pozyskać 2,6 terawata, czyli mniej więcej tyle, ile wynosi produkcja 2000 elektrowni atomowych.
      Istnieje kilka metod generowania energii z różnicy pomiędzy słodką a słoną wodą. Wszystkie one korzystają z faktu, że sole złożone są z jonów. W ciałach stałych ładunki dodatnie i ujemne przyciągają się i łączą. Na przykład sól stołowa złożona jest z dodatnio naładowanych jonów sodu połączonych z ujemnie naładowanymi jonami chloru. W wodzie jony takie mogą się od siebie odłączać i poruszać niezależnie.
      Jeśli po dwóch stronach półprzepuszczalnej membrany umieścimy wodę z dodatnio i ujemnie naładowanymi jonami, elektrony będą przemieszczały się od części ujemnie naładowanej do części ze znakiem dodatnim. Uzyskamy w ten sposób prąd.
      W 2013 roku francuscy naukowcy wykorzystali ceramiczną błonę z azotku krzemu, w którym nawiercili otwór, a w jego wnętrzu umieścili nanorurkę borowo-azotkową (BNNT). Nanorurki te mają silny ujemny ładunek, dlatego też Francuzi sądzili, że ujemnie naładowane jony nie przenikną przez otwór. Mieli rację. Gdy po obu stronach błony umieszczono słoną i słodką wodę, przez otwór przemieszczały się niemal wyłącznie jony dodatnie.
      Nierównowaga ładunków po obu stronach membrany była tak duża, że naukowcy obliczyli, iż jeden metr kwadratowy membrany, zawierający miliony otworów na cm2 wygeneruje 30 MWh/rok. To wystarczy, by zasilić nawet 12 polskich gospodarstw domowych.
      Problem jednak w tym, że wówczas stworzenie nawet niewielkiej membrany tego typu było niemożliwe. Nikt bowiem nie wiedział, w jaki sposób ułożyć długie nanorurki borowo-azotkowe prostopadle do membrany.
      Przed kilkoma dniami, podczas spotkania Materials Research Society wystąpił Semih Cetindag, doktorant w laboratorium Jerry'ego Wei-Jena na Rutgers University i poinformował, że jego zespołowi udało się opracować odpowiednią technologię. Nanorurki można kupić na rynku. Następnie naukowcy dodają je do polimerowego prekursora, który jest nanoszony na membranę o grubości 6,5 mikrometrów. Naukowcy chcieli wykorzystać pole magnetyczne do odpowiedniego ustawienia nanorurek, jednak BNNT nie mają właściwości magnetycznych.
      Cetindag i jego zespół pokryli więc ujemnie naładowane nanorurki powłoką o ładunku dodatnim. Wykorzystane w tym celu molekuły są zbyt duże, by zmieścić się wewnątrz nanorurek, zatem BNNT pozostają otwarte. Następnie do całości dodano ujemnie naładowane cząstki tlenku żelaza, które przyczepiły się do pokrycia nanorurek. Gdy w obecności tak przygotowanych BNNT włączono pole magnetyczne, można było manewrować nanorurkami znajdującymi się w polimerowym prekursorze nałożonym na membranę.  Później za pomocą światła UV polimer został utwardzony. Na koniec za pomocą strumienia plazmy zdjęto z obu stron membrany cienką warstwę, by upewnić się, że nanorurki są z obu końców otwarte. W ten sposób uzyskano membranę z 10 milionami BNNT na każdy centymetr kwadratowy.
      Gdy taką membranę umieszczono następnie pomiędzy słoną a słodką wodą, uzyskano 8000 razy więcej mocy na daną powierzchnię niż podczas eksperymentów prowadzonych przez Francuzów. Shan mówi, że tak wielki przyrost mocy może wynikać z faktu, że jego zespół wykorzystał węższe nanorurki, zatem mogły one lepiej segregować ujemnie naładowane jony.
      Co więcej, uczeni sądzą, że membrana może działać jeszcze lepiej. Nie wykorzystaliśmy jej pełnego potencjału. W rzeczywistości tylko 2% BNNT jest otwartych z obu stron, mówi Cetindag. Naukowcy pracują teraz nad zwiększeniem odsetka nanorurek otwartych z obu stron membrany.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Użytkownicy smartfonów, którym zależy na dłuższej pracy na pojedynczym ładowaniu baterii powinni zastanowić się nad częstszym używaniem... płatnych wersji oprogramowania. Abhinav Pathak i Charlie Hu z Purdue University oraz Ming Zhang z Microsoft Research odkryli, że bezpłatne aplikacje zużywają niezwykle dużo energii.
      Badacze stworzyli program Eprof, który bardzo szczegółowo opisuje zużycie energii przez urządzenie podczas używania różnych aplikacji. Następnie sprawdzili za jego pomocą smartfony z systemami Android i Windows Phone. Okazało się, że bezpłatne oprogramowanie, takie jak np. Angry Birds, Free Chess, Facebook i NYTimes na potrzeby swoich zasadniczych funkcji wykorzystuje jedynie 10-30 procent zużywanej energii. Na przykład Angry Birds używają tylko 20% wykorzystywanej energii na obsługę gry, a 45% jest zużywane na określenie lokalizacji użytkownika przez GPS oraz ładowanie odpowiednich reklam przez 3G. Łącze 3G pozostaje otwarte przez około 10 sekund po zakończeniu transmisji, co zużywa kolejne 28% energii.
      Eprof wykazał też, że takie marnotrawstwo energii jest związane z błędami niechlujnie napisanym kodem do zarabiania na bezpłatnych programach.
      Badacze udowodnili, że wilk może być syty i owca cała - poprawili kod w czterech programach, zmniejszając konsumpcję energii od 20 do 65 procent.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...