Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ultradźwiękowy wykrywacz min

Rekomendowane odpowiedzi

Amerykańscy uczeni poinformowali o opracowaniu nietypowego wykrywacza min. Urządzenie potrafi na odległość odnaleźć zakopane w ziemi miny dzięki wykorzystaniu fal dźwiękowych.

Skuteczne wykrywacze min są bardzo potrzebne w wielu krajach. Na całym świecie każdego roku ofiarami wybuchu min pada 26 tysięcy osób. Większość z nich to cywile, a ponad połowa nie ukończyła 16. roku życia – mówi Robert Haupt, wynalazca z MIT, który pracował nad wykrywaczem.

Obecnie do odnajdowania min najczęściej wykorzystuje się wykrywacze metali. Nie radzą sobie one jednak ani z minami z tworzyw sztucznych, ani z takimi, które zakopane są głęboko w ziemi. Ponadto pracują one na krótkich dystansach, a więc osoba obsługująca taki wykrywacz sama musi wejść na pole minowe, co wiąże się z dodatkowym ryzykiem.

Nowe urządzenie do odnajdowania min przypomina tarczę do rzutków. Emituje ono skoncentrowane ultradźwięki w kierunku pola minowego. Powietrze, przez które przechodzą ultradźwięki, obniża ich częstotliwość do poziomu słyszalnego dla ludzkiego ucha. Dźwięki wnikają w ziemię i odbijają się od napotkanych w niej ciał stałych. Te odbite fale są następnie mierzone przez system laserowy. Haupt odkrył, że odbite dźwięki są na tyle specyficzne dla różnych obiektów, iż nie tylko odróżniają miny od np. kamieni, ale również można dzięki nim odróżnić poszczególne typy min.

Testy przeprowadzone przez Korpus Inżynierów Armii Stanów Zjednoczonych wykazały, że nowy wykrywacz jest bardziej dokładny niż obecnie używane urządzenia. Ponadto potrafi odnaleźć minę z odległości 10 metrów.

Najpoważniejszym minusem zbudowanego prototypu jest fakt, iż szybko się on przegrzewa. Haupt i jego koledzy rozpoczęli już pracę nad udoskonaleniem urządzenia. Obiecują, że za dwa lata będzie ono gotowe do praktycznego wykorzystywania. Koszt nowego wykrywacza będzie wyższy, niż obecnie stosowanych. Haupt twierdzi jednak, że jeśli weźmie się pod uwagę jego większy zasięg, szybkość pracy i bezpieczeństwo, koszty obu urządzeń będą porównywalne.

Innym problemem może okazać się ukształtowanie terenu. Wykrywacz świetnie sprawdza się na płaskich przestrzeniach. Jednak tam, gdzie ziemia pokryta jest roślinnością a jej powierzchnia nie jest płaska, mogą pojawić się problemy. Laser odczytujący odbite dźwięki może w takich warunkach tracić zasięg.

Niezależni specjaliści uważają jednak, że to, czego dokonał Haupt jest olbrzymim postępem. Od dłuższego już czasu myślano o wykorzystaniu ultradźwięków do wykrywania min. Dotychczas nikomu się to jednak nie udało. Istnieje więc nadzieje, że skoro na tym polu dokonano przełomu, to uczeni poradzą sobie i z problemami wywołanymi ukształtowaniem terenu.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A jak zrobię kwaśną minę, to tez to wykryją swoim sprzętem?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Na MIT powstały ogniwa fotowoltaiczne cieńsze od ludzkiego włosa, które na kilogram własnej masy wytwarzają 18-krotnie więcej energii niż ogniwa ze szkła i krzemu. Jeśli uda się skalować tę technologię, może mieć do olbrzymi wpływ produkcję energii w wielu krajach. Jak zwraca uwagę profesor Vladimir Bulivić z MIT, w USA są setki tysięcy magazynów o olbrzymiej powierzchni dachów, jednak to lekkie konstrukcje, które nie wytrzymałyby obciążenia współczesnymi ogniwami. Jeśli będziemy mieli lekkie ogniwa, te dachy można by bardzo szybko wykorzystać do produkcji energii, mówi uczony. Jego zdaniem, pewnego dnia będzie można kupić ogniwa w rolce i rozwinąć je na dachu jak dywan.
      Cienkimi ogniwami fotowoltaicznymi można by również pokrywać żagle jednostek pływających, namioty, skrzydła dronów. Będą one szczególnie przydatne w oddalonych od ludzkich siedzib terenach oraz podczas akcji ratunkowych.
      To właśnie duża masa jest jedną z przyczyn ograniczających zastosowanie ogniw fotowoltaicznych. Obecnie istnieją cienkie ogniwa, ale muszą być one montowane na szkle. Dlatego wielu naukowców pracuje nad cienkimi, lekkimi i elastycznymi ogniwami, które można będzie nanosić na dowolną powierzchnię.
      Naukowcy z MIT pokryli plastik warstwą parylenu. To izolujący polimer, chroniący przed wilgocią i korozją chemiczną. Na wierzchu za pomocą tuszów o różnym składzie nałożyli warstwy ogniw słonecznych i grubości 2-3 mikrometrów. W warstwie konwertującej światło w elektryczność wykorzystali organiczny półprzewodnik. Elektrody zbudowali ze srebrnych nanokabli i przewodzącego polimeru. Profesor Bulović mówi, że można by użyć perowskitów, które zapewniają większą wydajność ogniwa, ale ulegają degradacji pod wpływem wilgoci i tlenu. Następnie krawędzie tak przygotowanego ogniwa pomarowano klejem i nałożono na komercyjnie dostępną wytrzymałą tkaninę. Następnie plastik oderwano od tkaniny, a na tkaninie pozostały naniesione ogniwa. Całość waży 0,1 kg/m2, a gęstość mocy tak przygotowanego ogniwa wynosi 370 W/kg. Profesor Bulović zapewnia, że proces produkcji można z łatwością skalować.
      Teraz naukowcy z MIT planują przeprowadzenie intensywnych testów oraz opracowanie warstwy ochronnej, która zapewni pracę ogniw przez lata. Zdaniem uczonego już w tej chwili takie ogniwo mogłoby pracować co najmniej 1 lub 2 lata. Po zastosowaniu warstwy ochronnej wytrzyma 5 do 10 lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizycy z MIT opracowali kwantowy „ściskacz światła”, który redukuje szum kwantowy w laserach o 15%. To pierwszy taki system, który pracuje w temperaturze pokojowej. Dzięki temu możliwe będzie wyprodukowanie niewielkich przenośnych systemów, które będzie można dobudowywać do zestawów eksperymentalnych i przeprowadzać niezwykle precyzyjne pomiary laserowe tam, gdzie szum kwantowy jest obecnie poważnym ograniczeniem.
      Sercem nowego urządzenia jest niewielka wnęka optyczna znajdująca się w komorze próżniowej. We wnęce umieszczono dwa lustra, z których średnia jednego jest mniejsza niż średnica ludzkiego włosa. Większe lustro jest zamontowane na sztywno, mniejsze zaś znajduje się na ruchomym wsporniku przypominającym sprężynę. I to właśnie kształt i budowa tego drugiego, nanomechanicznego, lustra jest kluczem do pracy całości w temperaturze pokojowej. Wpadające do wnęki światło lasera odbija się pomiędzy lustrami. Powoduje ono, że mniejsze z luster, to na wsporniku zaczyna poruszać się w przód i w tył. Dzięki temu naukowcy mogą odpowiednio dobrać właściwości kwantowe promienia wychodzącego z wnęki.
      Światło lasera opuszczające wnękę zostaje ściśnięte, co pozwala na dokonywanie bardziej precyzyjnych pomiarów, które mogą przydać się w obliczeniach kwantowych, kryptologii czy przy wykrywaniu fal grawitacyjnych.
      Najważniejszą cechą tego systemu jest to, że działa on w temperaturze pokojowej, a mimo to wciąż pozwala na dobieranie parametrów z dziedziny mechaniki kwantowej. To całkowicie zmienia reguły gry, gdyż teraz będzie można wykorzystać taki system nie tylko w naszym laboratorium, które posiada wielkie systemy kriogeniczne, ale w laboratoriach na całym świecie, mówi profesor Nergis Mavalvala, dyrektor wydziału fizyki w MIT.
      Lasery emitują uporządkowany strumień fotonów. Jednak w tym uporządkowaniu fotony mają pewną swobodę. Przez to pojawiają się kwantowe fluktuacje, tworzące niepożądany szum. Na przykład liczba fotonów, które w danym momencie docierają do celu, nie jest stała, a zmienia się wokół pewnej średniej w sposób, który jest trudny do przewidzenia. Również czas dotarcia konkretnych fotonów do celu nie jest stały.
      Obie te wartości, liczba fotonów i czas ich dotarcia do celu, decydują o tym, na ile precyzyjne są pomiary dokonywane za pomocą lasera. A z zasady nieoznaczoności Heisenberga wynika, że nie jest możliwe jednoczesne zmierzenie pozycji (czasu) i pędu (liczby) fotonów.
      Naukowcy próbują radzić sobie z tym problemem poprzez tzw. kwantowe ściskanie. To teoretyczne założenie, że niepewność we właściwościach kwantowych lasera można przedstawić za pomocą teoretycznego okręgu. Idealny okrąg reprezentuje równą niepewność w stosunku do obu właściwości (czasu i liczby fotonów). Elipsa, czyli okrąg ściśnięty, oznacza, że dla jednej z właściwości niepewność jest mniejsza, dla drugiej większa.
      Jednym ze sposobów, w jaki naukowcy realizują kwantowe ściskanie są systemy optomechaniczne, które wykorzystują lustra poruszające się pod wpływem światła lasera. Odpowiednio dobierając właściwości takich systemów naukowcy są w stanie ustanowić korelację pomiędzy obiema właściwościami kwantowymi, a co za tym idzie, zmniejszyć niepewność pomiaru i zredukować szum kwantowy.
      Dotychczas optomechaniczne ściskanie wymagało wielkich instalacji i warunków kriogenicznych. Działo się tak, gdyż w temperaturze pokojowej energia termiczna otaczająca system mogła mieć wpływ na jego działanie i wprowadzała szum termiczny, który był silniejszy od szumu kwantowego, jaki próbowano redukować. Dlatego też takie systemy pracowały w temperaturze zaledwie 10 kelwinów (-263,15 stopni Celsjusza). Tam gdzie potrzebna jest kriogenika, nie ma mowy o niewielkim przenośnym systemie. Jeśli bowiem urządzenie może pracować tylko w wielkiej zamrażarce, to nie możesz go z niej wyjąć i uruchomić poza nią, wyjaśnia Mavalvala.
      Dlatego też zespół z MIT pracujący pod kierunkiem Nancy Aggarval, postanowił zbudować system optomechaczniczny z ruchomym lustrem wykonanym z materiałów, które absorbują minimalne ilości energii cieplnej po to, by nie trzeba było takiego systemu chłodzić. Uczeni stworzyli bardzo małe lustro o średnicy 70 mikrometrów. Zbudowano je z naprzemiennie ułożonych warstw arsenku galu i arsenku galowo-aluminowego. Oba te materiały mają wysoce uporządkowaną strukturę atomową, która zapobiega utratom ciepła. Materiały nieuporządkowane łatwo tracą energię, gdyż w ich strukturze znajduje się wiele miejsc, gdzie elektrony mogą się odbijać i zderzać. W bardziej uporządkowanych materiałach jest mniej takich miejsc, wyjaśnia Aggarwal.
      Wspomniane wielowarstwowe lustro zawieszono na wsporniku o długości 55 mikrometrów. Całości nadano taki kształt, by absorbowała jak najmniej energii termicznej. System przetestowano na Louisiana State University. Dzięki niemu naukowcy byli w stanie określić kwantowe fluktuacje liczby fotonów względem czasu ich przybycia do lustra. Pozwoliło im to na zredukowanie szumu o 15% i uzyskanie bardziej precyzyjnego „ściśniętego” promienia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fale dźwiękowe o niskiej intensywności mogą selektywnie zabijać komórki nowotworowe, nie uszkadzając przy tym zdrowej tkanki. Dotychczas w onkologii używano ultradźwięków o wysokiej intensywności, za pomocą których podgrzewa się komórki do wysokiej temperatury. Ta metoda zabija jednak wszystkie komórki na danym obszarze.
      Badania nad wykorzystaniem pulsujących ultradźwięków o niskiej intensywności (low-intensity pulsed ultrasound – LIPUS) rozpoczęły się przed pięcioma laty na California Institute of Technology (Caltech). Wtedy to profesor Michael Ortiz zzaczł się zastanawiać, czy fizyczne różnice pomiędzy komórkami nowotworowymi a zdrowymi – ich wielkość, grubość ściany komórkowej czy rozmiary struktur wewnętrznych – mogą wpłynąć na to, w jaki sposób wibrują pod wpływem ultradźwięków i czy w ten sposób można zabić komórkę nowotworową.
      Ortiz stworzył więc model matematyczny, za pomocą którego badał, jak komórki będą reagowały na ultradźwięki o róznej częstotliwości. W 2016 roku naukowiec poinformował, że istnieją różnice w rezonansie pomiędzy komórkami zdrowymi i nowotworowymi. Te różnice oznaczały, że – przynajmniej teoretycznie – precyzyjnie dobierając częstotliwość fali dźwiękowej, można wprowadzić komórki nowotworowe w taki rezonans, że ich ściany ulegną zniszczeniu. Jednocześnie zaś nie będzie to szkodziło zdrowym komórkom. Ortiz nazwał cały proces onkotripsją, od greckich słów ὄγκος (guz) i τρίβω (ścieram).
      Uczony, podekscytowany uzyskanymi wynikami, zaprosił do współpracy kilu innych naukowców z Caltechu, w tym wynalazcę Mory'ego Ghariba, który specjalizuje się w technologiach medycznych i ich komercjalizacji, współpracującego z nim doktoranta Davida Mittelsteina, pracującego nad różnymi protezami czy eksperta od ultradźwięków profesora Mikhaila Shapiro. Do grupy dołączyło też kilku ekspertów w dziedzinie onkologii. Gdy usłyszałem o tym pomyśle, byłem zaintrygowany. Jeśli to się powiedzie, powstanie rewolucyjna metoda walki z nowotworami, mówi profesor Peter P. Lee, dyrektor Wydziału Immunoterapii Onkologicznej w City of Hope, centrum badawczym w Duarte.
      Naukowcy zbudowali prototypowe urządzenie i rozpoczęli testy. Badali różne typy komórek nowotworowych, poddając je ultradźwiękom o różnej częstotliwości. Sprawdzali też, w jaki sposób częstotliwości te wpływają na zdrową tkankę.
      Profesor Lee mówi, że celem zespołu jest nie tylko zabijanie komórek nowotworowych, ale też przywabienie na miejsce zniszczonego guza komórek układu odpornościowego, by zabiły one te komórki, które przeżyły terapię ultradźwiękami. Guzy nowotworowe są heterogeniczne. Jest niemal niemożliwe znalezienie takiej częstotliwości dźwięku, by zabił on wszystkie komórki pojedynczego guza. Jeśli jakieś komórki przetrwają, to guz odrośnie, mówi Lee. Stąd potrzeba zaangażowania w terapii również układu odpornościowego.
      Każdego dnia w organizmie człowieka giną dziesiątki milionów komórek. Większość z nich umiera w wyniku naturalnego procesu zwanego apoptozą. Bywa jednak i tak, że komórki giną w wyniku infekcji czy zranienia. Układ odpornościowy potrafi odróżnić apoptozę od zranienia. Ignoruje śmierć komórki w wyniku apoptozy, gdy jednak komórka ginie w wyniku infekcji, komórki układu odpornościowego zjawiają się na miejscu, by walczyć z patogenami.
      Grupa Ortiza ma zamiar stworzyć taki system ultradźwiękowy, by układ odpornościowy otrzymywał informację, że doszło do śmierci komórek w wyniku ich uszkodzenia. To spowodowałoby mobilizację limfocytów, które po przybyciu na miejsce zabiją, jak mają naukowcy nadzieję, pozostałe przy życiu komórki nowotworowe.
      Na razie udane eksperymenty przeprowadzono na różnego typu komórkach hodowanych w laboratorium. Na ich podstawie udoskonalono prototypowe urządzenie do ultrasonografii. Dowiadujemy się coraz więcej na temat tego, jak wibrują poszczególne rodzaje komórek nowotworowych i jak pojawiają się u nich uszkodzenia, stwierdzają uczeni. W następnym etapie badań mają zamiar sprawdzić, jak system ultradźwiękowy poradzi sobie z całymi guzami nowotworowymi. Jeśli wszystko pójdzie zgodnie z planem, w przyszłości rozpoczną się testy na zwierzętach, a później na ludziach.
      Szczegóły badań ukazały się na łamach Applied Physics Letters, w artykule zatytułowanym Selective ablation of cancer cells with low intensity pulsed ultrasound.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas Fifth International Symposium on Networks-on-Chip 2011 specjaliści z MIT-u zdobyli nagrodę za najlepsze opracowanie naukowe symulatora układu scalonego. Ich program Hornet modeluje działanie wielordzeniowego procesora znacznie lepiej niż inne tego typu oprogramowanie. Potrafił znaleźć w oprogramowaniu błędy, których inne symulatory nie zauważyły.
      Teraz Hornet został znakomicie udoskonalony i wyposażony w nowe funkcje. Jego nowa wersja potrafi symulować zużycie energii, komunikację między rdzeniami, interakcję pomiędzy CPU a pamięcią oraz obliczyć czas potrzebny na wykonanie poszczególnych zadań.
      Symulatory są niezwykle ważne dla firm produkujących układy scalone. Zanim przystąpi się do produkcji kości przeprowadzane są liczne testy ich działania na symulatorach.
      Dotychczasowe symulatory przedkładały szybkość pracy nad dokładność. Nowy Hornet pracuje znacznie wolniej niż jego starsze wersje, jednak dzięki temu pozwala na symulowanie 1000-rdzeniowego procesora z dokładnością do pojedynczego cyklu. Hornet jest nam w stanie wyliczyć, że ukończenie konkretnego zadania będzie np. wymagało 1.223.392 cykli - mówi Myong Cho, doktorant z MIT-u.
      Przewaga Horneta nad konkurencją polega też na tym, że inne symulatory dobrze oceniają ogólną wydajność układu, mogą jednak pominąć rzadko występujące błędy. Hornet daje większą szansę, że zostaną one wyłapane.
      Podczas prezentacji Cho, jego promotor profesor Srini Devadas i inni studenci symulowali na Hornecie sytuację, w której wielordzeniowy procesor korzysta z nowej obiecującej techniki przetwarzania danych pacjentów. Hornet zauważył, że niesie ona ze sobą ryzyko wystąpienia zakleszczenia, czyli sytuacji, w której różne rdzenie, aby zakończyć prowadzone obliczenia, czekają nawzajem na dane od siebie. Powoduje to, że zadania nie mogą być zakończone, gdyż rdzenie nawzajem siebie blokują. Żaden inny symulator nie zasygnalizował tego problemu. Hornet pozwolił też na przetestowanie zaproponowanego przez naukowców sposobu na uniknięcie zakleszczenia.
      Zdaniem jego twórców Hornet, ze względu na swoje powolne działanie, posłuży raczej do symulowania pewnych zadań, a nie działania całych aplikacji. Przyda się zatem tam, gdzie zajdzie potrzeba upewnienia się, czy nie występują żadne nieprawidłowości czy też do statystycznego zbadania możliwości wystąpienia błędów.
    • przez KopalniaWiedzy.pl
      Studenci najsłynniejszej uczelni technicznej świata - MIT-u (Massachusetts Institute of Technology) - mogą otrzymać od władz uczelni certyfikat ukończenia kursu... piractwa. I nie chodzi tutaj o piractwo komputerowe, a to prawdziwe, morskie.
      Uczelnia postanowiła uczynić oficjalnym zwyczaj, który był praktykowany przez jej studentów przez co najmniej 20 lat. MIT wymaga, by uczący się ukończyli w czasie studiów co najmniej 4 różne kursy wychowania fizycznego. Teraz ci, którzy z powodzeniem ukończą strzelanie z pistoletu, łuku, żeglarstwo i szermierkę otrzymają oficjalny certyfikat
      Carrie Sampson Moore, dziekan wydziału wychowania fizycznego, mówi, że co roku kontaktowali się z nią studenci, prosząc o wydanie zaświadczenia o ukończeniu kursu pirata. Zawsze mówiłam im, że to inicjatywa studencka i byli bardzo rozczarowani - stwierdziła Moore.
      Od początku bieżącego roku postanowiono, że uczelnia zacznie wydawać oficjalne certyfikaty. Drukowane są one na zwoju pergaminu z równą starannością jak inne uczelniane dyplomy. Właśnie otrzymało je czterech pierwszych piratów, a w kolejce czekają następni.
      Mimo, iż cała ta historia może brzmieć niepoważnie, to certyfikat i warunki jego uzyskania są traktowane przez uczelnię całkiem serio. Przyszli piraci nie mogą liczyć na żadną taryfę ulgową, a otrzymanie świadectwa ukończenia kursu wiąże się ze złożeniem przysięgi. Stephanie Holden, która znalazła się w czwórce pierwszych piratów, zdradziła, że musiała przysiąc, iż ucieknie z każdej bitwy, której nie będzie mogła wygrać i wygra każdą bitwę, z której nie będzie mogła uciec.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...