Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Fotoniczne układy coraz bliżej rynkowego debiutu

Rekomendowane odpowiedzi

W Science ukazał się artykuł, w którym naukowcy z California Institute of Technology opisują, w jaki sposób poradzili sobie jedną z najpoważniejszych przeszkód stojących na drodze do produkcji i upowszechnienia fotonicznych układów scalonych. Uczonym opracowali nową technikę izolowania sygnałów świetlnych na krzemowym układzie scalonym.

Kości fotoniczne, w przeciwieństwie do układów elektronicznych, do przesyłania danych i wykonywania obliczeń będą wykorzystywały fotony. Co prawda światło już teraz służy do przesyłania danych za pomocą światłowodów, jednak w samym komputerze sygnały świetlne zamieniane są na znacznie mniej efektywne sygnały elektryczne.

Izolowane sygnały świetlne mogą podróżować tylko w jednym kierunku. Jeśli nie będą one izolowane, fotony odbierane i wysyłane pomiędzy różnymi częściami fotonicznego układu będą na siebie wpływały, zajdzie pomiędzy nimi interferencja, a zatem całość będzie niestabilna. W układzie elektrycznym do odseparowania sygnałów służy dioda. Należy więc stworzyć jej fotoniczny odpowiednik. To coś, czego naukowcy szukają od 20 lat - mówi Liang Feng z Caltechu, pracujący pod kierunkiem profesora Axela Scherera.

Promień świetlny ma takie same właściwości gdy porusza się w jednym kierunku, jak i wówczas, gdy zostanie odbity i wraca. Aby izolować dane fotoniczne trzebaby w jakiś sposób zmienić właściwości promienia podążającego w przeciwnym kierunku. Dopiero wówczas  można by skonstruować urządzenie blokujące światło o właściwościach odpowiadających właściwościom światła odbitego, a zatem spowodować, by podróżowało ono w jednym kierunku.

Do odseparowania światła Feng i jego koledzy wykorzystali nowy typ optycznego falowodu o przekroju 0,8 mikrona, który został zbudowany z krzemu. Falowód przepuszcza światło w jednym kierunku, ale zmienia mod światła podróżującego w kierunku przeciwnym. Jako, że pomiędzy promieniami światła o różnych modach nie zachodzi interferencja, mogą przez siebie przenikać bez ryzyka zmiany niesionych informacji.

Dotychczas stosowano dwie metody izolowania optycznego. Pierwsza, wynaleziona niemal 100 lat temu, zakładała wykorzystanie pola magnetycznego. Pole to zmienia polaryzację światła podróżującego w przeciwnym kierunku. Problem jednak w tym, że w pobliżu komputerów nie możesz stosować silnych pól magnetycznych. To niezdrowe - mówi Feng.

Druga z metod, opracowana przed 50 laty, zakłada wykorzystanie materiałów o nieliniowych właściwościach optycznych. Materiały takie zmieniają częstotliwość fali świetlnej. Problem jednak w tym, że krzem charakteryzuje się właściwościami liniowymi. Aby zbudować układ scalony z materiałów o właściwościach nieliniowych, trzeba by zmienić materiał, z jakich są wytwarzane. Rezygnacja z krzemu oznaczałaby kolosalne koszty i trudności technologiczne związane z całkowitą zmianą technologii wykorzystywanych od dziesięcioleci.

Zbudowanie krzemowego falowodu to pierwszy przykład urządzenia o liniowych właściwościach optycznych, które może służyć do separowania światła.

Uczeni z Caltechu już zbudowali prototypowe urządzenie, które można zintegrować na krzemowym układzie.

Obecnie najbardziej zaawansowane układy fotoniczne pracują z przepustowościami rzędu 10 gigabitów na sekundę. Wkrótce ich wydajność powinna wzrosnąć do 40 Gb/s. Jednak bez wbudowanego optycznego izolatora kości takie nie mogą zadebiutować na rynku. Projekt Caltechu daje nadzieję na pojawienie się w sprzedaży fotonicznych układów scalonych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

<p>W <em>Science</em>    <p>Obecnie najbardziej zaawansowane układy fotoniczne pracują z częstotliwościami rzędu 10 gigabitów na sekundę.</p>

Raczej przepustowością.

BTW Witam wszystkich.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po dziesięciu latach pracy naukowcom z Princeton University udało się skonstruować system, który pozwala na kontrolowanie spinu elektronów w krzemie nawet przez 10 sekund. Wydłużenie czasu, w którym można kontrolować spin elektronów jest niezbędne do skonstruowania praktycznego komputera kwantowego. Dotychczas udawało się utrzymać spin elektronów przez ułamki sekund. Stany kwantowe są bardzo nietrwałe i pod wpływem czynników zewnętrznych dochodzi do ich utraty, czyli dekoherencji. Kwantowy bit, na którym mają pracować kwantowe komputery, traci swoje właściwości i staje się „zwykłym“ bitem, przyjmującym w danym momencie tylko jedną wartość, zamiast wcześniejszych wszystkich możliwych wartości.
      Profesor Stephen Lyon i Alexei Tyryshkin, który są autorami najnowszego osiągnięcia, mówią, że kluczem do sukcesu było użycie niezwykle czystej próbki krzemu-28. Częściowo zawdzięczamy to udoskonaleniu metody pomiaru, ale większość zależy od materiału. To najczystsza próbka, jakiej dotychczas używaliśmy - mówi Lyon.
      Naukowcy zamknęli kawałek krzemu-28 w stalowym cylindrze wypełnionym helem. Wewnątrz panowała temperatura 2 kelwinów. Cylinder znajdował się pomiędzy dwoma pierścieniami, które miały za zadanie kontrolować pole magnetyczne wokół próbki. Po potraktowaniu krzemu mikrofalami doszło do skoordynowania spinów około 100 miliardów elektronów. Zaszła zatem koherencja i została ona utrzymana przez niewiarygodnie długie 10 sekund. Jej utrzymanie jest niezwykle ważne dla komputerów kwantowych, gdyż działające na nich oprogramowanie będzie potrzebowało czasu np. na korekcję błędów czy i operacje na danych. Muszą być one zatem dostępne na tyle długo, by program zakończył pracę z nimi.
      Stan kwantowy może zostać zniszczony przez naturalne pole magnetyczne materiałów. Dlatego też zdecydowano się na wykorzystanie krzemu-28, który, w przeciwieństwie do tradycyjnie używanego krzemu-25 ma niezwykle słabe pole magnetyczne.
      Projekt rozpoczął się 10 lat temu. Steve przyszedł do mnie i powiedział, żebyśmy wykorzystali próbkę wolną od innych izotopów - wspomina Tyryshkin. Po trzech latach badań uczeni byli wstanie utrzymać koherencję przez 600 mikrosekund. Przez kolejne lata wypróbowywali różne materiały.
      W końcu dzięki Avogadro Project, którego celem jest opracowanie nowej definicji kilograma, udało się uzyskać próbkę niezwykle czystego krzemu-28. Międzynarodowa współpraca dała niezwykłe wyniki. Zwykle w krzemie-28 znajduje się nawet 50000 części na milion krzemu-29, do tego dochodzą inne zanieczyszczenia, które mają silne pole magnetyczne. W oczyszczonym krzemie-28 liczba atomów krzemu-29 nie przekracza 50 na milion. Taka próbka była... zbyt czysta. Dodano do niej nieco fosforu, by była ona na tyle aktywna elektrycznie, żeby reagować na mikrofale. To właśnie ta reakcja, którą Lyon i Tyryshkin nazywają „echem“, gdyż są to mikrofale emitowane przez próbkę, pozwala na odczytanie spinu elektronów.
      Bardzo trudne było znalezienie odpowiedniej liczby atomów fosforu. Ich zbyt duża liczba oznaczałaby powstanie w próbce zbyt silnego pola magnetycznnego. Z kolei za mało fosforu dałoby zbyt słabe „echo“, którego nie można by odczytać. Istotne było też znaczne obniżenie temperatury próbki, gdyż w temperaturze pokojowej elektrony fosforu są zbyt aktywne. „Uspokajają się“ dopiero w temperaturze bliskiej zeru absolutnemu.
      Warto w tym miejscu przypomnieć, że już wcześniej innym zespołom naukowym udało się kontrolować spin elektronów przez równie długi czas. Wykonano nawet pewne operacje matematyczne. Jednak do eksperymentów używano jonów zamkniętych w komorach próżniowych. Lyon i Tyryshkin skupili się na krzemie, gdyż uważają, że jest on znacznie bardziej praktyczny. Współczesna elektronika już wiele dekad temu zrezygnowała przecież z lamp elektronowych na rzecz krzemu.
    • przez KopalniaWiedzy.pl
      Współpraca naukowców z University of New South Wales, Melbourne University i Purdu University zaowocowała stworzeniem najmniejszego połączenia elektrycznego umieszczonego na krzemie. Ma ono grubość 1 atomu i szerokość 4 atomów. Mimo tak niewielkich rozmiarów transport elektronów odbywa się równie wydajnie co za pomocą tradycyjnego połączenia miedzianego.
      Osiągnięcie to ma olbrzymie znacznie na wielu polach rozwoju elektroniki i inżynierii. Pozwoli w przyszłości na dalsze zmniejszanie rozmiaru układów scalonych. Ponadto daje nadzieję na wykorzystanie w komputerach kwantowych techniki precyzyjnego wzbogacania krzemu pojedynczymi atomami.
      Prace australijsko-amerykańskiego zespołu wykazały też, że prawo Ohma ma zastosowanie w skali atomowej. To niesamowite, że Prawo Ohma, prawo tak podstawowe, zostaje zachowane przy budowaniu połączeń elektrycznych z pojedynczych cegiełek natury - stwierdził Bent Weber, jeden z twórców miniaturowych kabli. Badacze podkreślają, że połączenia były tworzone atom po atomie, co znacząco różni się od technik stosowanych we współczesnej elektronice. Obecnie usuwa się nadmiarowy materiał, a to technika trudna, kosztowna i nieprecyzyjna. Gdy schodzi się do wielkości poniżej 20 atomów, mamy do czynienia z takimi różnicami w liczbie atomów, że dalsze skalowanie jest trudne. Ale podczas tego eksperymentu stworzono urządzenie dzięki umieszczaniu pojedynczych atomów fosforu na krzemie i okazało się, że gęsto ułożony przewód o szerokości zaledwie 4 atomów działa tak, jak przewody metalowe - powiedział profesor Gerhard Klimeck z Purdue.
      Jak poinformowała profesor Michelle Simmons z University of New South Wales, która kierowała badaniami, głównym celem badań jest rozwój przyszłych komputerów kwantowych, w których pojedyncze atomy są wykorzystywane do przeprowadzania obliczeń.
    • przez KopalniaWiedzy.pl
      Na University of Bristol powstał fotoniczny układ scalony, który pozwala na tworzenie i manipulowanie stanem splątanym i stanem mieszanym. Stan splatany, zachodzący pomiędzy dwoma niepołączonymi ze sobą cząsteczkami, umożliwi komputerowi kwantowemu wykonywanie obliczeń. Uczeni z Bristolu jako pierwsi pokazali, że stan splątany można uzyskać, manipulować nim i  mierzyć na kawałku krzemu.
      Aby zbudować kwantowy komputer musimy nie tylko umieć kontrolować złożone zjawiska takie jak splątanie czy stan mieszany, ale musimy być w stanie dokonać tego w układzie scalonym - mówi profesor Jeremy O'Brien, dyrektor Centre for Quantum Photonics. Nasze urządzenie to umożliwia i wierzymy, że stanowi ono ważny krok na drodze do stworzenia optycznego komputera kwantowego - dodaje.
      Układ zbudowany jest z sieci kanałów, w których dokonywane są odpowiednie manipulacje fotonami. Do kości dołączonych jest osiem elektrod, których konfigurację można na bieżąco zmieniać. Dzięki tym elektrodom pary fotonów są splątywane we wszelkie możliwe sposoby i dokonywane są na nich operacje. Podobnie manipuluje się stanem mieszanym pojedynczego fotonu.
      Chip z Bristolu jest mniej więcej dziesięciokrotnie bardziej złożony, niż wcześniej budowane układy do manipulacji stanami kwantowymi.
    • przez KopalniaWiedzy.pl
      Szwajcarscy uczeni z École Polytechnique FÉdÉrale de Lausanne (EPFL), którzy na początku bieżącego roku poinformowali o świetnych właściwościach molibdenitu, materiału mogącego stać się konkurencją dla krzemu i grafenu, właśnie zaprezentowali pierwszy układ scalony zbudowany z tego materiału.
      Zbudowaliśmy prototyp, umieszczając od dwóch to sześciu tranzystorów i udowadniając, że możliwe jest przeprowadzenie podstawowych operacji logicznych. To dowodzi, że można zbudować większy układ - mówi profesor Andras Kis, dyrektor Laboratorium Nanoskalowych Struktur i Elektroniki (LANES).
       
      Uczony wyjaśnia, że molibdenit umożliwia budowanie mniejszych tranzystorów niż krzem. Obecnie nie można tworzyć warstw krzemu cieńszych niż 2 nanometry, gdyż istnieje ryzyko ich utlenienia się, co negatywnie wpływa na właściwości elektryczne materiału. Z molibdenitu można tworzyć efektywnie działającą warstwę o grubości zaledwie 3 atomów. Jest ona bardzo stabilna i łatwo w niej kontrolować przepływ elektronów. Ponadto molibdenitowe tranzystory są bardziej wydajne. Przełączają się też szybciej niż tranzystory krzemowe.
       
      Jak informuje profesor Kis, molibdenit równie efektywnie jak krzem wzmacnia sygnał elektryczny. Sygnał wyjściowy może być czterokrotnie silniejszy niż sygnał wejściowy. A to oznacza, że możliwe jest produkowanie bardzo złożonych układów. Dla grafenu ta wartość wynosi około 1. Poniżej tej wartości sygnał wyjściowy będzie zbyt słaby, by pobudził do pracy następny, podobny układ - mówi Kis.
       
      Molibdenit, w przeciwieństwie do krzemu, ma interesujące właściwości mechaniczne, które być może pozwolą na produkowanie elastycznych układów scalonych.
    • przez KopalniaWiedzy.pl
      Na Northwestern University powstała nowa anoda dla akumulatorów litowo-jonowych. Umożliwia ona przechowywanie 10-krotnie więcej ładunku niż obecne elektrody, a sam akumulator można załadować 10-krotnie szybciej.
      Odkryliśmy sposób na dziesięciokrotne wydłużenie życia baterii litowo-jonowej. Nawet po 150 cyklach ładowania/rozładowywania, co zajmie rok lub więcej, nasz akumulator będzie pięciokrotnie bardziej wydajny niż współcześnie stosowane rozwiązania - mówi profesor Harold H. Kung.
      Współczesne baterie litowo-jonowe działają dzięki przesyłaniu jonów litu pomiędzy dwoma elektrodami - anodą i katodą. Gdy używamy energii, jony litu przemieszczają się z anody, przez elektrolit, do katody. Gdy ładujemy akumulator, podróż odbywa się w odwrotną stronę.
      Obecnie wydajność akumulatorów Li-Ion jest ograniczona dwoma czynnikami. Ich pojemność zależy od tego, jak wiele jonów litu może przechować anoda lub katoda. Z kolei prędkość rozładowywania, a zatem dostarczania energii, zależy od prędkości przemieszczana się jonów pomiędzy elektrolitem a anodą.
      We współczesnych akumulatorach anoda wykonana jest z węgla i na każde 6 jego atomów przechowuje jeden atom litu. Eksperymentowano z zastąpieniem węgla krzemem, który ma większą pojemność, gdyż przechowuje atom litu na każde 4 atomy krzemu. Jednak podczas pracy krzem znacznie zmienia swoje rozmiary, co prowadzi do uszkodzenia elektrody i spadku pojemności baterii.
      Ponadto poszczególne warstwy węgla w elektrodzie są bardzo cienkie, jednak długie. Podczas procesu ładowania każdy jon musi przebyć całą drogę od krawędzi by dotrzeć do kolejnych warstw. To zajmuje sporo czasu, a ponadto powoduje, że na krawędziach powstaje „korek" z jonów oczekujących na możliwość wyruszenia w drogę.
      Zespół Kunga postanowił za jednym zamachem rozwiązać oba problemy. Po pierwsze warstwy krzemu poprzedzielał warstwami węgla. Mamy dzięki temu znacznie większą pojemność energii, gdyż wykorzystaliśmy krzem, a jego poprzedzielanie zmniejszyło straty pojemności spowodowane rozszerzaniem się i kurczeniem krzemu - wyjaśnia Kung. Uczeni wykorzystali też proces utleniania do uzyskania niewielkich (10x20 nanometrów) dziur w warstwach węgla. Dziury te tworzą skróty, dzięki którym jony litu nie muszą podróżować przez całą warstwę. Pozwoliło to na 10-krotne skrócenie czasu ładowania baterii.
      Po udoskonaleniu anody uczeni chcą zająć się pracami nad katodą. Mają też zamiar opracować nowy elektrolit, który będzie powodował, że w wysokich temperaturach akumulator automatycznie przerwie pracę, dzięki czemu będzie bezpieczniejszy w użytkowaniu.
      Technologia Kunga i jego zespołu powinna trafić na rynek w ciągu 3-5 lat.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...