Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Dyrektor generalny CERN-u Rolf Heuer twierdzi, że do końca 2012 roku Wielki Zderzacz Hadronów ostatecznie dowiedzie istnienia bądź nie bozonu Higgsa. Aby to sprawdzić potrzebujmy więcej danych, nawet dziesięciokrotnie więcej niż obecnie - stwierdził Heuer. Fizycy z CERN już wiedzą, że jeśli bozon Higgsa istnieje, to jego masa wynosi od 115 do 140 gigaelektronowoltów. Jeśli zostanie on znaleziony w tym zakresie, to będzie on bozonem przewidzianym w Modelu Standardowym bądź też bozonem Higgsa z teorii o supersymetrii. Bozon o masie ponad 450 GeV wykluczy supersymetrię, stwierdził Heuer.

Supersymetria to zestaw teorii stwierdzających, że każda znana cząstka ma co najmniej jednego, nieznanego nam, partnera.

Jeśli chodzi o bozon Higgsa to mamy dane dotyczące jego masy i kilka intrygujących fluktuacji. Prawdopodobnie masa bozonu Higgsa jest niska. Jeśli nie znajdziemy go w przedziale niskich mas, to będzie oznaczało, że Model Standardowy jest nieprawidłowy. O bozonie Higgsa wiemy wszystko, z wyjątkiem tego, czy istnieje - dodał Heuer.

Uczeni z cernowskiego Compact Muon Solenoid Experiment już wcześniej poinformowali o tym, że znaleźli bozon Higgsa, jednak nie mają wystarczającej ilości danych, by to potwierdzić.

Uczeni z amerykańskiego Fermilab, które korzysta z akceleratora Tevatron, również informowali o zauważeniu czegoś, co może być bozonem Higgsa. Także i oni nie są w stanie obecnie tego potwierdzić. Jeśli bozon Higgsa istnieje, to Tevatron może wkrótce zanotować wiele sygnałów świadczących o jego obecności. Biorąc pod uwagę liczbę dokonanych kolizji Tevatron jest obecnie unikatowym urządzeniem pod względem możliwości badania rozpadów bozonów Higgsa w kwarki spodnie - oświadczyli przedstawiciele Fermilab.

Także i oni twierdzą, że do końca przyszłego roku będą w stanie potwierdzić lub wykluczyć istnienie Boskiej Cząstki.

Przed kilkoma dniami Fermilab poinformowało o odkryciu nowej cząstki - Xi-sub-b.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość simian raticus

Zwisa mi to w sumie! nawet niechce mi się tego NEW'sa czytać tak powiem!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zwisa mi to w sumie! nawet niechce mi się tego NEW'sa czytać tak powiem!

 

1256749322862.jpg

 

#temat

Mam takie pytanie, bo to dość ciekawe. Jeśli okazałoby się, że faktycznie - odkryto tę cząstkę i odpowiadałaby za masę, a więc zarówno to ona tworzyłaby grawitację i jej ulegała, co by ta informacja w zasadzie nam dała? Czy jest jakieś praktyczne zastosowanie czegoś takiego?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Informacje płynące ze świata fizyki kwantowej prawidłowo interpretować mogą jedynie osoby posiadające odpowiednią wiedzę na jej temat. Czyli w przybliżeniu "prawie nikt". Tym samym natychmiastowe skutki eksperymentalnego udowodnienia istnienia lub nie bozonu Higgsa będą dla społeczeństwa żadne. Poza małymi grupkami ludzi takimi jak ja, którzy będą skakać z radości po lekturze końcowego raportu z arXiv, niezależnie od jego konkluzji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mam tylko jedno pytanie do osób które to wymyślają... Jeżeli bozon higgisa ma masę równą 450 GeV to w jaki sposób nadaję on masę np neutronowi który ma masę ponad 450 razy mniejszą?? Czyli jeden bozon na 450 neutronów?? To juz wolę nie wiedzieć ile elektronów trzeba zebrać aby jeden bozon nadał im masę...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mam tylko jedno pytanie do osób które to wymyślają... Jeżeli bozon higgisa ma masę równą 450 GeV to w jaki sposób nadaję on masę np neutronowi który ma masę ponad 450 razy mniejszą?? Czyli jeden bozon na 450 neutronów?? To juz wolę nie wiedzieć ile elektronów trzeba zebrać aby jeden bozon nadał im masę...

 

1) Bozon Higgsa ma stanowić mechanizm uzyskiwania masy przez cząstki, jego potencjalna masa nijak ma się do masy innych cząstek. Łatwiej byłoby posługiwiwać się energią, ale popularno-naukowe źródła informacji słusznie uznają, że M->E wywoływałoby powszechną konsternację.

 

2) Neutron jest fermionem, nie bozonem.

 

A jeśli faktycznie chcesz poznać szczegóły zapoznaj się z mechanizmem i polem Higgsa. I generalnie z teorią pola, grupą Liego, etc.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość simian raticus

Narkotyki to lepszy wynalazek, niż kwadratowe koła!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

2) Neutron jest fermionem, nie bozonem.

 

Nie za bardzo tłoczy się w jądrze jak na fermion? co z zakazem Pauliego ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie za bardzo tłoczy się w jądrze jak na fermion? co z zakazem Pauliego ?

 

Zakaz Pauliego oczywiście obowiązuje, każdy neutron w jądrze tego samego atomu ma unikalną wartość N-L-M-MS - zatem się nie tłoczy, patrząc pod kątem spełnienia warunku fermion-niefermion :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      CERN podpisał z trzema francuskimi dostawcami energii umowy, na podstawie których do roku 2027 około 10% zużywanej przez ośrodek energii będzie pochodziło z paneli fotowoltaicznych. Energia elektryczna stanowi około 95% całości energii wykorzystywanej przez CERN i kupowana jest we Francji. Obecnie roczne zapotrzebowanie ośrodka – w latach gdy pracują akceleratory – to 1300 GWh/rok, z czego Wielki Zderzacz Hadronów zużywa aż 55%.
      Podpisane umowy przewidują, że na południu Francji powstaną trzy duże farmy fotowoltaiczne, które od stycznia 2027 roku będą dostarczały w szczycie 95 MW, a rocznie zapewnią dostawę 140 GWh. Umowy podpisano na 15 lat. To 10% zapotrzebowania podczas pracy akceleratorów i 25% zapotrzebowania w czasie, gdy akceleratory są wyłączone przez dłuższy czas.
      Farmy fotowoltaiczne pracujące na potrzeby CERN-u będą miały powierzchnię około 90 hektarów. To około 40% powierzchni całego ośrodka. "Projekt o tej skali nie może zostać zrealizowany na terenie CERN-u, na przykład na dachach budynków czy parkingów. Sami możemy zapewnić sobie około 1% potrzebnej energii", wyjaśnia Nicolas Bellegarde, koordynator ds. energii w CERN-ie.
      Pierwszą z trzech umów podpisano już w sierpniu i zakłada ona budowę farmy w departamencie Lozère. Dwie kolejne – z września i października – oznaczają, że farmy powstaną w departamentach Bouches-du-Rhône i Var. Teraz wszystko zostało dopięte na ostatni guzik i budowa farm może się rozpocząć.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas seminarium zorganizowanego w CERN-ie naukowcy pracujący przy projekcie NA62, w ramach którego badane są rzadkie rozpady kaonów, poinformowali o jednoznacznym potwierdzeniu rejestracji ultrarzadkiego rozpadu kaonu dodatniego do dodatnio naładowanego pionu i parę neutrino-antyneutrino. Uczeni z NA62 już wcześniej obserwowali sygnały, świadczące o zachodzeniu takiego procesu, jednak teraz, po raz pierwszy, pomiary zostały dokonane z poziomem ufności 5σ, od którego możemy mówić o dokonaniu odkrycia.
      Zaobserwowane zjawisko, które zapisujemy jako K+→π+νν, to jeden z najrzadziej obserwowanych rozpadów. Model Standardowy przewiduje, że w ten sposób rozpada się mniej niż 1 na 10 miliardów kaonów dodatnich. Ta obserwacja to moment kulminacyjny projektu, który rozpoczęliśmy ponad dekadę temu. Obserwowanie zjawisk naturalnych, których prawdopodobieństwo wynosi 10-11 jest zarówno fascynujące, jak i wymagające. Wielki wysiłek, jaki włożyliśmy w badania, w końcu zaowocował obserwacją, dla której projekt NA62 powstał, mówi Giuseppe Ruggiero, rzecznik projektu badawczego.
      Po co jednak fizycy wkładają tyle wysiłku w obserwacje tak rzadko zachodzącego procesu? Otóż modele teoretyczne sugerują, że rozpad K+→π+νν jest niezwykle wrażliwy na wszelkie odchylenia od Modelu Standardowego, jest zatem jednym z najbardziej interesujących procesów dla poszukiwań zjawisk fizycznych wykraczających poza Model Standardowy.
      Uzyskany obecnie wynik jest o około 50% większy, niż zakłada to MS, ale wciąż mieści się w granicach niepewności. Dzięki zebraniu kolejnych danych naukowcy z NA62 będą w stanie w ciągu kilku lat przeprowadzić testy rozpadu pod kątem występowania tam zjawisk, których Model Standardowy nie opisuje. Poszukiwanie nowej fizyki w tym rozpadzie wymaga zgromadzenia większej ilości danych. Nasze obecne osiągnięcie to duży krok naprzód. Stanowi ono fundament dla kolejnych badań, dodaje Karim Massri z NA62.
      Grupa NA62 uzyskuje kaony kierując intensywną wiązkę protonów z Super Proton Synchrotron w CERN-ie na stacjonarny cel. W wyniku zderzenia w każdej sekundzie powstaje około miliarda cząstek, które są rejestrowane przez detektory. Dodatnie kaony stanowią około 6% z tych cząstek. NA62 dokładnie określa sposób rozpadu tych kaonów, rejestrując wszystkie powstające wówczas cząstki, z wyjątkiem neutrin. Ich obecność jest dedukowana z brakującej energii.
      Dla obecnie opisanego odkrycia kluczowe były dane zebrane w roku 2021 i 2022, które zgromadzono po udoskonaleniu detektorów. Dzięki temu NA62 może pracować z wiązkami o 30% bardziej intensywnymi. W połączeniu z nowymi technikami analitycznymi, naukowcy są w stanie prowadzić analizy o 50% szybciej, niż wcześniej, a jednocześnie tłumić sygnały, które są podobne. Nasza praca polega na zidentyfikowaniu 1 na 10 miliardów rozpadu K+ i upewnieniu się, że nie był to żaden z pozostałych 9 999 999 999, dodaje kierownik projektu, Joel Swallow.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.
      Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.
      Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.
      Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Głównym powodem wybudowania Wielkiego Zderzacza Hadronów (LHC) były poszukiwania bozonu Higgsa. Urządzenie wywiązało się z tego zadania w 2012 roku i od tej pory poszerza naszą wiedzę o świecie. Teraz naukowcy z eksperymentów CMS i ATLAS w CERN poinformowali o znalezieniu pierwszych dowodów na rzadki rozpad bozonu Higgsa do bozonu Z i fotonu. Jeśli ich spostrzeżenia się potwierdzą, może być to pośrednim dowodem na istnienia cząstek spoza Modelu Standardowego.
      Model Standardowy przewiduje, że jeśli bozon Higgsa ma masę ok. 125 gigaelektronowoltów – a z ostatnich badań wiemy, że wynosi ona 125,35 GeV – to w około 0,15% przypadków powinien się on rozpadać na bozon Z – elektrycznie obojętny nośnik oddziaływań słabych – oraz foton, nośnik oddziaływań elektromagnetycznych. Niektóre teorie uzupełniające Model Standardowy przewidują inną częstotliwość dla takiego rozpadu. Zatem sprawdzenie, które z nich są prawdziwe, daje nam ważny wgląd zarówno w samą fizykę spoza Modelu Standardowego, jak i na bozon Higgsa. A mowa jest o fizyce poza Modelem Standardowym, gdyż modele przewidują, że bozon Higgsa nie rozpada się bezpośrednio do bozonu Z i fotonu, ale proces ten przebiega za pośrednictwem pojawiających się i znikających cząstek wirtualnych, które trudno jest wykryć.
      Uczeni z ATLAS i CMS przejrzeli dane z 2. kampanii badawczej LHC z lat 2015–2018 i zdobyli pierwsze dowody na rozpad bozonu Higgsa do bozonu Z i fotonu. Istotność statystyczna odkrycia wynosi sigma 3,4, jest więc mniejsza od sigma 5, kiedy to można mówić o odkryciu. Dlatego też na na razie do uzyskanych wyników należy podchodzić z ostrożnością, wymagają one bowiem weryfikacji.
      Każda cząstka ma specjalny związek z bozonem Higgsa, zatem poszukiwanie rzadkich dróg rozpadu bozonu Higgsa jest priorytetem. Dzięki drobiazgowemu połączeniu i analizie danych z eksperymentów ATLAS i CMS wykonaliśmy krok w kierunku rozwiązania kolejnej zagadki związanej z bozonem Higgsa, mówi Pamela Ferrari z eksperymentu ATLAS. A Florencia Canelli z CMS dodaje, że podczas trwającej właśnie 3. kampanii badawczej LHC oraz High-Luminosity LHC naukowcy będą w stanie doprecyzować obecnie posiadane dane oraz zarejestrować jeszcze rzadsze rodzaje rozpadów Higgsa.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      CERN poinformował, że w przyszłym roku przeprowadzi o 20% mniej eksperymentów, a w roku bieżącym akcelerator zostanie wyłączony 28 listopada, 2 tygodnie wcześniej, niż planowano. Zmiany mają związek z niedoborami energii i rosnącymi jej kosztami. W ten sposób CERN chce pomóc Francji w poradzeniu sobie z problemami z dostępnością energii.
      CERN kupuje 70–75% energii z Francji. Gdy wszystkie akceleratory w laboratorium pracują, zużycie energii wynosi aż 185 MW. Sama infrastruktura Wielkiego Zderzacza Hadronów potrzebuje do pracy 100 MW.
      W związku ze zbliżającą się zimą we Francji wprowadzono plan zredukowania zużycia energii o 10%. Ma to pomóc w uniknięciu wyłączeń prądu. Stąd też pomysł kierownictwa CERN, by pomóc w realizacji tego planu. Ponadto rozpoczęto też prace nad zmniejszeniem zapotrzebowania laboratorium na energię. Podjęto decyzję m.in. o wyłączaniu na noc oświetlenia ulicznego, rozpoczęcia sezonu grzewczego o tydzień później niż zwykle oraz zoptymalizowania ogrzewania pomieszczeń przez całą zimę.
      Działania na rzecz oszczędności energii nie są w CERN niczym niezwykłym. Laboratorium od wielu lat pracuje nad zmniejszeniem swojego zapotrzebowania i w ciągu ostatniej dekady konsumpcję energii udało się ograniczyć o 10%. Było to możliwe między innymi dzięki zoptymalizowaniu systemów chłodzenia w centrum bazodanowym, zoptymalizowaniu pracy akceleratorów, w tym zmniejszenie w nich strat energii.
      W CERN budowane jest właśnie nowe centrum bazodanowe, które ma ruszyć pod koniec przyszłego roku. Od początku zostało ono zaprojektowane z myślą o oszczędności energii. Znajdą się tam m.in. systemy odzyskiwania ciepła generowanego przez serwery. Będzie ono wykorzystywane do ogrzewania innych budynków laboratorium. Zresztą już teraz ciepło generowane w jednym z laboratoriów CERN jest używane do ogrzewania budynków w pobliskiej miejscowości Ferney-Voltaire. Trwają też prace nad optymalizacją systemu klimatyzacji i wentylacji oraz nad wykorzystaniem energii fotowoltaicznej.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...