Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Po modyfikacji niepobudliwe komórki stały się pobudliwe

Recommended Posts

Modyfikując genetycznie niepobudliwe w zwykłych okolicznościach komórki, naukowcy z Duke University przekształcili je w komórki zdolne do generowania i przekazywania sygnałów elektrycznych. Rozwiązania tego typu znajdą zapewne zastosowanie w leczeniu chorób układu nerwowego i serca (Nature Communications).

Wprowadzając tylko 3 kanały jonowe [a właściwie ich geny], byliśmy w stanie zapewnić nieaktywnym zwykle elektrycznie komórkom zdolność bycia wzbudzanymi przez zmianę potencjału elektrycznego w środowisku – wyjaśnia Rob Kirkton. Przeprowadziliśmy też potwierdzające słuszność koncepcji eksperymenty, w ramach których te zmodyfikowane komórki potrafiły zapełnić duże elektryczne luki pomiędzy komórkami serca szczurów.

Prof. Nenad Bursac, który nadzorował prace Kirktona, podkreśla, że uzyskane pobudliwe elektrycznie komórki mogą być ważne w leczeniu zawałów serca, w których uszkodzone części mięśnia sercowego stają się elektrycznie niekompatybilne i nie są w stanie kurczyć się synchronicznie z sąsiadującymi z nimi zdrowymi komórkami.

Akademicy z Duke University dywagowali, że zaledwie kilka podstawowych kanałów wystarczy, by wyzwolić pobudliwość elektryczną komórek. Wytypowano 3 konkretne kanały, w tym potasowy, sodowy i połączenia jonowo-metaboliczne. Wszystkie one odgrywają krytyczną rolę w generowaniu i rozprzestrzenianiu aktywności elektrycznej w ssaczym sercu – podkreśla Kirkton.

Po zademonstrowaniu, że po modyfikacjach genetycznych komórki ludzkich nerek stają się pobudliwe elektrycznie, zaczęto sprawdzać, czy potrafią przekazać potencjał czynnościowy między dwiema komórkami serca w hodowlach dwu- i trójwymiarowych.

Naukowcy stworzyli ścieżkę w kształcie litery "S" z klastrami zdrowych, żywych komórek szczurzego serca na każdym końcu. Przestrzeń między nimi wypełniano albo niepobudliwymi elektrycznie komórkami (scenariusz kontrolny), albo komórkami zmodyfikowanymi genetycznie. Gdy na jeden z klastrów komórek serca zadziałał bodziec, sygnał szybko się przemieszczał, napotykając wreszcie na niepobudliwe komórki. Gdy jednak zastosowano komórki zmodyfikowane genetycznie, szybko powstawał impuls elektryczny, który przemieszczał się przez esowaty odcinek o długości 3 cm. Ostatecznie docierał do klastra komórek serca na drugim krańcu szlaku. Jeśli dla odmiany bodziec przykładano do zmodyfikowanych komórek na środku szlaku, impuls podróżował w kierunku obu końców z komórkami serca i następowało ich wzbudzenie.

Kirkton zaznacza, że nowo uzyskane komórki łatwo hodować w laboratorium, wszystkie są identyczne genetycznie i funkcjonalnie, można je też dalej modyfikować, aby zmienić ich zachowanie elektryczne lub budowę. Komórki te można wykorzystać jako laboratoryjną platformę do badania roli specyficznych kanałów jonowych w bioelektryczności na poziomie tkankowym oraz skuteczności nowych leków lub terapii […].

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dwa białka - receptory glikokortykoidów (ang. glucocorticoid receptor, GR) i mineralokortykoidów (ang. mineralocorticoid receptor, MR) - wspierają się wzajemnie, by utrzymać serce w dobrym zdrowiu. Gdy sygnalizacja między nimi zostaje zaburzona, u myszy rozwija się choroba serca.
      Wyniki, które ukazały się w piśmie Science Signalling, mogą zostać wykorzystane do opracowania związków terapeutycznych dla osób z grupy podwyższonego ryzyka zawału.
      Stres zwiększa ryzyko zgonu z powodu niewydolności serca, bo nadnercza wytwarzają wtedy kortyzol. Kortyzol wywołuje reakcję walcz lub uciekaj i wiąże się z receptorami GR i MR w różnych tkankach ciała, by m.in. ograniczyć stan zapalny.
      Gdy poziom kortyzolu we krwi jest zbyt wysoki przez dłuższy czas, mogą się rozwinąć różne czynniki ryzyka chorób serca, w tym podwyższony poziom cholesterolu i cukru czy nadciśnienie.
      Dr Robert Oakley zidentyfikował źle działające GR w latach 90., gdy jako student pracował z dr. Johnem Cidlowskim na Uniwersytecie Karoliny Północnej w Chapel Hill. Krótko po tym odkryciu inni naukowcy stwierdzili, że ludzie z ponadprzeciętną liczbą zmienionych receptorów GR są bardziej narażeni na choroby serca. Opierając się na tych wynikach, Oakley i Cidlowski testowali szczep myszy pozbawionych sercowych GR. U zwierząt dochodziło do powiększenia serca, a przez to do jego niewydolności i zgonu. Kiedy naukowcy z NIEHS (National Institute of Environmental Health Sciences) wyhodowali szczep myszy bez sercowych MR, serca gryzoni działały normalnie.
      Oakley i Cidlowski zaczęli się więc zastanawiać, co się stanie, gdy w tkance serca brakować będzie obu receptorów. Naukowcy przypuszczali, że zwierzęta po podwójnym knock-oucie genowym będą miały podobne lub poważniejsze problemy z sercem jak myszy bez GR. Ku naszemu zaskoczeniu, serca były [jednak] oporne na chorobę - opowiada Oakley.
      Cidlowski podkreśla, że u myszy tych nie zaszły zmiany genowe, które doprowadziły do niewydolności serca u gryzoni pozbawionych GR, a jednocześnie zaszły korzystne zmiany w działaniu genów chroniących serce. Choć ich serca działały prawidłowo, w porównaniu do serc bez receptorów MR, były one nieco powiększone.
      Sugerujemy, że skoro GR i MR współpracują, lepszym podejściem [do leczenia ludzi z chorobami serca] będzie produkowanie leków działający nie na jeden, ale na dwa receptory naraz - podsumowuje Cidlowski.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Płody mogą wysłać organizmowi matki komórki macierzyste, które różnicując się w komórki serca, dokonują naprawy schorowanego narządu. Choć eksperymenty prowadzono na myszach, zespół Hiny Cahundry z Mount Sinai School of Medicine uważa, że właśnie w ten sposób można wytłumaczyć wysoki odsetek samoistnych wyleczeń u kobiet, które w okresie okołoporodowym zmagały się z kardiomiopatiami.
      W eksperymentach Amerykanów zwykłe samice spółkowały z samcami, u których we wszystkich tkankach ciała wytwarzało się białko wzmocnionej zielonej fluorescencji (ang. ang. enhanced green fluorescent protein, EGFP). Dzięki temu łatwo było prześledzić obecność komórek pochodzących od dziecka w organizmie matki.
      Ekipa zauważyła, że multipotencjalne komórki macierzyste płodu wszczepiały się wybiórczo w uszkodzonych strefach matczynego serca (komórki multipotencjalne to komórki poszczególnych listków zarodkowych: ektodermy, endodermy czy mezodermy; mówi się, że są ukierunkowane tkankowo, czyli mogą się przekształcać wyłącznie w komórki narządów powstających z danego listka). Różnicowały się one w rozmaite linie komórek serca - w warunkach in vivo w komórki nabłonka, komórki mięśni gładkich oraz kardiomiocyty. W warunkach in vitro płodowe komórki wyizolowane z serca matki powtarzały te same szlaki różnicowania, tworząc dodatkowo naczynia krwionośne i bijące kardiomiocyty. Akademicy mogli to wszystko sprawdzić, ponieważ u ciężarnych samic wywoływano zawał, a po 2 tygodniach zabijano, by przeprowadzić sekcję.
      Wydaje się zatem, że komórki macierzyste płodu mogą trafiać do krwiobiegu matki. Ponieważ utrzymują się potem przez dziesięciolecia w tkankach, mamy do czynienia z mikrochimerami. Podobne działania leżą w interesie płodów, ponieważ poprawiając stan zdrowia matki, zwiększają własne szanse na przeżycie.
    • By KopalniaWiedzy.pl
      Synestezja typu grafem-kolor, gdzie znak graficzny ma jakąś barwę, wydaje się mieć związek z hiperpobudliwością neuronów w pierwszorzędowej korze wzrokowej.
      Większość z nas zakłada, że doświadczamy świata w ten sam sposób co inni, jednak synestezja to klarowny przykład grupy, która widzi świat w fundamentalnie różny sposób. Większość ludzi nie ma świadomego wrażenia koloru podczas patrzenia na cyfry, litery i słowa, a synestetycy mają. Badanie takich osób może zatem rzucić nieco światła na mechanizmy mózgowe leżące u podłoża świadomości - opowiada Devin Blair Terhune z Uniwersytetu w Oksfordzie.
      Wcześniejsze badania wykazały, że osoby, które widzą barwy cyfr i liter, lepiej rozróżniają kolory niż inni synestetycy, co sugerowało, że przyczyny należy szukać w nadaktywnej korze wzrokowej.
      W eksperymentach Brytyjczyków wzięło udział 6 ludzi z synestezją typu grafem-kolor. Naukowcy zastosowali przezczaszkową stymulację magnetyczną pierwszorzędowej kory wzrokowej. Chcieli w ten sposób wywołać fotyzm, czyli coś, czego zwykle doświadcza się po bezpośrednim patrzeniu na jaskrawe światło (pojawiają się wtedy niewielkie świecące plamki czy rozbłyski). Okazało się, że synestetycy potrzebowali 3-krotnie mniejszej stymulacji od grupy kontrolnej.
      Byliśmy zaskoczeni skalą różnic. Wszystko wskazuje na to, że bazowa aktywność neuronów pierwszorzędowej kory wzrokowej jest u synestetyków wyższa, dlatego do wystąpienia potencjału czynnościowego potrzeba mniejszej stymulacji.
      W dalszych eksperymentach akademicy uciekli się do innej metody - przezczaszkowej stymulacji prądem stałym (ang. transcranial direct current stimulation, tDCS). Za jej pomocą zmniejszano albo zwiększano pobudliwość neuronów. Co ciekawe, zmniejszenie pobudliwości neuronów kory wzrokowej potęgowało doznania synestetyczne. Terhune potrafi wyjaśnić te z pozoru konfundujące wyniki. To trochę tak, jakby próbować znaleźć kogoś w pokoju pełnym podskakujących ludzi [sytuacja przed stymulacją]. Gdy wszyscy stoją spokojnie, łatwiej go wypatrzeć [po stymulacji]. W ten metaforyczny sposób neurolog stara się przekonać, że nadpobudliwe neurony współzawodniczą z regionami odpowiedzialnymi za synestezję. Usunięcie szumu z tła wzmaga wrażenia.
      Terhune opowiada, że hiperpobudliwe neurony stanowią bodziec do rozwoju synestezji we wczesnym dzieciństwie. Podwyższona aktywność komórek nerwowych sprzyja tworzeniu połączeń między rejonami, które się zwykle nie komunikują. Gdy to zadanie zostaje zrealizowane, nadpobudliwość wydaje się przeszkadzać w cieszeniu się z dobrodziejstw synestezji.
    • By KopalniaWiedzy.pl
      Głęboka stymulacja specyficznych obszarów mózgu prowadzi do powstawania nowych neuronów i polepszenia pamięci oraz uczenia.
      Głęboka stymulacja mózgu [ang. deep brain stimulation, DBS] okazała się dość skuteczna w leczeniu zaburzeń ruchowych, np. w chorobie Parkinsona, lecz ostatnio zaczęto badać jej efektywność w przypadku szeregu zaburzeń neurologicznych i psychiatrycznych – tłumaczy dr Paul Frankland z Hospital for Sick Children (SickKids) w Toronto. Wiele wskazuje na to, że DBS będzie można wykorzystać w terapii zaburzeń pamięci.
      W ciągu życia nowe neurony powstają w różnych rejonach hipokampa, który odpowiada m.in. za pamięć i uczenie. Zespół Franklanda wykazał, że u dorosłych myszy godzinna stymulacja kory śródwęchowej, która jest ściśle powiązana anatomicznie i funkcjonalnie z formacją hipokampa, skutkuje 2-krotnym zwiększeniem liczby nowych neuronów w hipokampie.
      Nasilenie produkcji nowych neuronów utrzymywało się co prawda tylko przez tydzień, ale wszystkie powstałe w tym czasie komórki rozwijały się normalnie i tworzyły połączenia z sąsiednimi neuronami.
      Po 6 tygodniach naukowcy postanowili przetestować pamięć gryzoni. Sprawdzali, jak szybko myszy nauczą się poruszać po podeście zanurzonym w niewielkiej kałuży. W porównaniu do zwierząt z grupy kontrolnej, przedstawiciele grupy DBS spędzali więcej czasu na pływaniu w pobliżu podestu, co wskazuje, że stymulacja kory śródwęchowej usprawniła uczenie przestrzenne.
    • By KopalniaWiedzy.pl
      Po raz pierwszy wykazano, że otyłość bezpośrednio wywołuje elektryczne anomalie w pracy serca.
      Kardiolog i doktorant Hany Abed z Uniwersytetu w Adelajdzie podkreśla, że naukowcy dysponują coraz większą liczbą dowodów, że otyłość zmienia budowę, rozmiary serca, sposób, w jaki się ono kurczy, a także funkcję elektryczną mięśnia. Skutkiem tego ostatniego jest najczęstsze zaburzenie rytmu serca – migotanie przedsionków. Abed prowadzi badania, które mają ujawnić, jak otyłość wpływa na serce i czy spadek wagi może obniżyć ryzyko rozwoju migotania przedsionków.
      Wiemy już, że otyłość prowadzi do wzrostu ciśnienia i obciążenia serca. Najnowsze badania laboratoryjne na modelu owczym pokazują także, że otyłość wywołuje elektryczne nieprawidłowości w przedsionkach serca.
      Kardiolog z uniwersyteckiego Centrum Zaburzeń Rytmu Serca ujawnia, że w Australii częściej hospitalizuje się pacjentów z powodu migotania przedsionków niż niewydolności serca. Problem polega na tym, że migotanie przedsionków jest zazwyczaj wychwytywane przypadkowo: podczas kontroli lekarskiej lub gdy pojawiają się zawroty głowy, palpitacje serca czy bóle w klatce piersiowej. Niestety, często pierwszym objawem zaburzenia rytmu serca bywa dopiero udar.
      Abed ujawnia, że specjaliści z sektora medycznego szacują, że do 2020 r. aż 2/3 przypadków migotania przedsionków będzie można przypisać samej tylko otyłości. Naukowiec z antypodów wyjaśnia, że osoby najbardziej zagrożone migotaniem przedsionków – seniorzy – stają się coraz grubsze, przez co ryzyko rozwoju choroby serca jest u nich coraz wyższe.
×
×
  • Create New...