Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Sirolimus, in. rapamycyna, i jego pochodna ewerolimus, które dotąd stosowano m.in. w transplantologii przy zapobieganiu odrzuceniu przeszczepu, odwracają efekty starzenia u dzieci z zespołem progerii Hutchinsona-Gilforda (HGPS).

Progerię charakteryzuje przyspieszone starzenie się. Wywołuje je mutacja punktowa (substytucja pojedynczego nukleotydu) w położonym na chromosomie 1. genie LMNA, który koduje białko laminę A. Proteina ta stabilizuje błonę otaczającą jądro komórkowe. Zmutowaną laminę A nazywa się progeryną. Jej akumulacja w organizmie zaburza prawidłowy rozwój tkanek. Podczas podziału komórek hodowlanych nagromadzenie wadliwego białka niekorzystnie wpływa na integralność błony komórkowej i prowadzi do powstawania uwypukleń jąder. Progeryna jest też produkowana przez starzejące się zdrowe komórki.

Zespół Francisa S. Collinsa, dyrektora amerykańskich Narodowych Instytutów Zdrowia, zauważył, że zastosowanie rapamycyny (antybiotyku makrolidowego) w odniesieniu do fibroblastów osób z HGPS spowalniało starzenie komórek i całego organizmu. Sirolimus znosił uwypuklanie jąder, opóźniał początek etapu starości komórek i nasilał degradację progeryny.

Co ważne, w normalnych fibroblastach rapamycyna ograniczała tworzenie się nierozpuszczalnych agregatów progeryny i stymulowała oczyszczanie w procesie autofagii. Jak obrazowo tłumaczą Amerykanie, leki immunosupresyjne wzmacniały wewnątrzkomórkowy mechanizm recyklingu, zmniejszając ilość progeryny nawet o połowę. Zespół ma nadzieję, że dzięki obiecującym wynikom wkrótce rozpoczną się testy kliniczne z udziałem dzieci z progerią. Obecnie w fazie testów klinicznych znajdują sie 3 leki, jednak działają one na innej zasadzie niż sirolimus i ewerolimus. Należą bowiem do grupy inhibitorów transferazy farnezylu i zapobiegają tworzeniu się progeryny. Collins uważa, że można by zastosować terapię połączoną lekami z obydwu grup (inhibitorów i antybiotyków makrolidowych).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy Uniwersytetu Jyväskylä odkryli, że u nietrenujących wcześniej młodych mężczyzn trening siłowy korzystnie wpływa na zawartość autofagosomów.
      Autofagia to proces kataboliczny, który polega na trawieniu przez komórkę obumarłych lub uszkodzonych elementów jej struktury, np. białek czy organelli.
      Finowie analizowali wskaźniki autofagii i odpowiedzi na białko niesfałdowane (ang. unfolded protein response, UPR); UPR to odpowiedź na zaburzenia homeostazy w siateczce śródplazmatycznej. Polega m.in. na czasowym zmniejszeniu syntezy nowych i degradacji nieprawidłowo sfałdowanych białek, a także na kierowaniu komórek do apoptozy. W tym celu 2-krotnie wykonywano biopsję mięśni: po pojedynczej sesji ćwiczeń siłowych i po 21 tygodniach treningu siłowego. W eksperymencie wzięli udział nietrenujący wcześniej młodzi i starsi mężczyźni.
      Starzenie może zmniejszać poprawę jakości mięśni wywołaną treningiem siłowym - podkreślają doktorant Jaakko Hentilä oraz Juha Hulmi z Academy of Finland.
      Autorzy publikacji z pisma Acta Physiologica podkreślają, że bez względu na wiek sesja ćwiczeń siłowych aktywowała jednak UPR, co sugeruje, że u młodych i starszych osób mięśnie szkieletowe pod wieloma względami podobnie przystosowują się do takiej formy ruchu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Specjaliści z Instytutu Badawczego Ellen Scripps zidentyfikowali prion TPrP (od ang. toxic PrP), który jako monomer prowadzi do rozmaitych form obumierania neuronów - apoptozy i autofagii - wiązanych do tej pory z toksycznością agregatów białek prionowych, czyli oligomerów. Oznacza to, że jest co najmniej 10-krotnie bardziej śmiercionośny od nich.
      Zmiany związane z działaniem TPrP przypominają te widywane w mózgach zwierząt z BSE (gąbczastą encefalopatią bydła). Jak donosi zespół prof. Corinne Lasmézas, najbardziej toksyczna w warunkach in vivo oraz in vitro forma prionu ma budowę helisy alfa. Co ciekawe, wysoce α-helikalne półprodukty opisano także w przypadku innych amyloidogennych białek, ale ich biologiczne znaczenie nadal pozostaje nieznane.
      Amerykanie uważają, że ich odkrycia nie tylko pozwolą lepiej zrozumieć BSE czy jej ludzki odpowiednik chorobę Creutzfeldta-Jakoba, ale także zbadać możliwość, czy podobne neurotoksyczne białka o nieprawidłowej konformacji nie są zaangażowane w alzheimeryzm czy parkinsonizm.
    • przez KopalniaWiedzy.pl
      Autofagia - proces polegający na trawieniu przez komórkę obumarłych czy uszkodzonych elementów - bywa nazywana recyklingiem komórkowym. Okazuje się, że proces ten jest korzystny dla zdrowia także z nieznanych dotąd powodów - to on odpowiada za zwiększenie wychwytu glukozy pod wpływem ćwiczeń. Efekt bezcenny z punktu widzenia zapobiegania cukrzycy.
      Congcong He z University of Texas Southwestern Medical Center zauważyła, że u myszy autofagia nasila się po 30 min od rozpoczęcia ćwiczeń. Chcąc sprawdzić, czy wpływ aktywności fizycznej na zarządzanie przez organizm poziomem glukozy ma coś wspólnego z autofagią, Amerykanie posłużyli się 2 grupami gryzoni, którym podawano wysokotłuszczowy pokarm. W skład jednej wchodziły zwykłe myszy, do drugiej trafiły gryzonie niebędące w stanie nasilić autofagii pod wpływem ćwiczeń (autofagia podstawowa przebiegała u nich prawidłowo).
      Zespół wykazał, że intensywny wysiłek nasila autofagię w komórkach mięśni szkieletowych i sercu, stąd pomysł, by zbadać rolę autofagii, hodując zmutowane zwierzęta (myszy BCL2 AAA). W loci genów odpowiadających za fosforylację białek Bcl-2 wprowadzano transgeny, które zapobiegały wywołanemu przez bodziec rozbiciu kompleksu Bcl-2-beklina 1 (beklina 1 jest białkiem indukującym autofagię).
      Mimo że jedząc sporo tłuszczu, zmutowane myszy BCL2 AAA przytyły nieco więcej od osobników z grupy kontrolnej, podczas intensywnych ćwiczeń wykazywały zmniejszoną wytrzymałość oraz zmieniony metabolizm cukru. Regularna aktywność nie chroniła ich przed wywołaną niezdrową dietą nietolerancją glukozy. Jednym słowem, ćwicząc, zwykłe myszy chudły i eliminowały wczesne symptomy cukrzycy typu 2. (zaczątki insulinooporności), a u zmutowanych zwierząt nic takiego się nie działo.
      Amerykanie uważają, że zamiast dostarczać paliwo (źródło energii), autofagia wywołana ćwiczeniami pozwala komórkom dokładnie dostroić metabolizm glukozy. Manipulowanie poziomem Bcl-2 może być logiczną strategią naśladowania skutków zdrowotnych ćwiczeń i zapobiegania lub leczenia upośledzonego metabolizmu glukozy.
    • przez KopalniaWiedzy.pl
      Komórki z kolana osoby z chorobą zwyrodnieniową stawów (łac. osteoarthritis, OA) mają anormalnie skrócone telomery, czyli ochronne sekwencje z nukleotydów, które zabezpieczają przed "przycinaniem" chromosomów po ich podwojeniu w czasie podziału komórki. Im bliżej uszkodzonego rejonu wewnątrz stawu, tym wyższy odsetek komórek z bardzo krótkimi telomerami.
      Normalnie telomery ulegają skróceniu podczas każdego kolejnego podziału (lepiej, by utracie podlegały właśnie one niż znacznie cenniejsze sekwencje, czyli geny), jednak zmniejszenie długości bywa także wynikiem nagłego uszkodzenia komórki, np. przez stres oksydacyjny.
      Ponieważ wyniki wcześniejszych badań hodowli komórkowych wskazywały, że w chorobie zwyrodnieniowej stawów spada średnia długość telomerów, duński zespół posłużył się nową metodą macierzy długości pojedynczego telomeru (ang. Universal single telomere length assay), by zbadać komórki pobrane z kolan pacjentów, którzy przeszli operację wszczepienia endoprotezy.
      Zauważyliśmy zarówno zmniejszoną długość telomerów, jak i związany z natężeniem OA, bliskością najbardziej uszkodzonego fragmentu stawu oraz starością wzrost liczby komórek z ultrakrótkimi telomerami. [...] Stara chrząstka w obrębie stawów nie jest w stanie prawidłowo się naprawić. Sprawa z telomerami pokazuje nam, że w OA zachodzą równolegle dwa procesy. Zwykłe związane z wiekiem skrócenie telomerów, które odpowiada za niezdolność komórek do podziałów i starość oraz ultraskrócenie telomerów, najprawdopodobniej wywołane naprężeniem uciskającym podczas użytkowania, które z kolei prowadzi do [...] wyeliminowania zdolności samoregeneracji stawu. Sądzimy, że drugie z wymienionych zjawisk jest najważniejsze w przebiegu OA. Uszkodzona chrząstka może potem zwiększać stres mechaniczny i krąg się zamyka - wyjaśnia Maria Harbo.
    • przez KopalniaWiedzy.pl
      Podczas zapłodnienia do komórki jajowej wnika prawie cały plemnik (główka i szyjka), jednak, jak się okazuje, większość jego organelli komórkowych, w tym mitochondria, nie jest przekazywanych potomstwu. Powód? Wkrótce po zapłodnieniu oocyt eliminuje je na drodze autofagii.
      Amerykańsko-francuski zespół jako pierwszy zademonstrował, że w ciągu kilku minut od zapłodnienia komponenty plemnika zostają zamknięte w pęcherzykach, a następnie rozłożone przez enzymy. Za pomocą PCR (reakcji łańcuchowej polimerazy) wykazano, że cały materiał genetyczny z mitochondriów ojca ulega szybkiej degradacji.
      W artykule opublikowanym na łamach Science specjaliści wyrażają nadzieję, że zrozumienie ewolucyjnych źródeł eliminowania ojcowskich mitochondriów przyczyni się także np. do ulepszenia metod klonowania czy zapłodnienia in vitro.
      Wyłącznie matczyne mitochondria pozostają u większości organizmów, w tym u ssaków. Dotąd nie było jednak wiadomo, kiedy i w jaki sposób dochodzi do wyeliminowania mitochondriów od ojca. Odpowiedź na te pytania znaleziono podczas badań na nicieniu Caenorhabditis elegans.
      Podczas eksperymentów akademicy zablokowali system komórkowy odpowiedzialny za spermofagię. Okazało się, że ojcowskie mitochondria pozostały wtedy w embrionie. Później Francuzi i Amerykanie sprawdzali, czy podobne zjawiska zachodzą w nowo zapłodnionych oocytach myszy. Zauważyli, że białka autofagocytarne gromadzą się wokół środkowej części plemnika, gdzie znajdują się mitochondria.
      Naukowcy proponują pewne wyjaśnienie efektu, który najwyraźniej występuje u wielu gatunków zwierząt. Wg nich, mitochondria plemników są eliminowane przez komórki jajowe, bo ze względu na nasilony metabolizm męskich gamet DNA w mitochondriach plemników może przechodzić częste mutacje. Lepiej ich więc nie przekazywać potomstwu.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...