Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przekonania wpływają na stężenie hormonu głodu

Recommended Posts

Ludzie przekonani, że podano im bardziej kaloryczny napój, czują się w większym stopniu nasyceni od badanych, którym podano ten sam napój opisany jako niskokaloryczny i niskotłuszczowy. Psycholodzy z Uniwersytetu Yale wykazali, że stan umysłu wpływa na poziom greliny - wywołującego głód hormonu wydzielanego przez pusty żołądek.

Zwykle stężenie greliny rośnie przed posiłkami i maleje po ich zakończeniu. Im większa ilość hormonu w układzie, tym większe prawdopodobieństwo, że dana osoba będzie się przejadać.

Psycholodzy z Yale podali badanym koktajl mleczny o wartości energetycznej 380 kilokalorii. Połowie powiedziano, że zawiera on 620 kilokalorii, a reszcie, że 140. U osób przekonanych, że wypiły wysokotłuszczowy, wysokokaloryczny napój, doszło do dużo ostrzejszego spadku poziomu greliny. U ochotników sądzących, że koktajl zawierał mało tłuszczu i niewiele kalorii, wykres poziomu greliny był bardziej spłaszczony.

Studium pokazuje, że stan umysłu może wpływać na fizyczne poczucie sytości. Mózg oszukano, by odczuwał sytość lub głód. Poczucie w większym stopniu zależało od przekonań niż od tego, co się w rzeczywistości zjadło - opowiada Alia J. Crum. Pani psycholog dodaje, że uzyskane wyniki są antyintuicyjne. Spożycie koktajlu uważanego za wersję wzbogaconą o wszystko było bowiem zdrowsze od wypicia koktajlu dla uświadomionych dietetycznie, bo prowadziło do ostrzejszej reakcji grelinowej.

Share this post


Link to post
Share on other sites

uzyskane wyniki są antyintuicyjne. Spożycie koktajlu uważanego za wersję wzbogaconą o wszystko było bowiem zdrowsze od wypicia koktajlu dla uświadomionych dietetycznie, bo prowadziło do ostrzejszej reakcji grelinowej

 

Dlaczego antyintuicyjne? Ja jak widzę coś "light" to zakładam, że to jest mniej smaczne, a przez to intuicyjnie mniej zdrowe, bo w myśl starej maksymy jaką powtarzał mi babcia "wszystko co smakuje idzie na zdrowie" (oczywiście z przymrużeniem ucha) :)

Light jest wersją dla ludzi odchudzających się a więc na swój sposób "chorych" a nie ludzi "uświadomionych dietetycznie"

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Uwalnianie wapnia z kości zachodzi zarówno w czasie laktacji, jak i w przebiegu różnych nowotworów, np. raka piersi. Naukowcy wiedzieli, że odpowiada za to wydzielane przez gruczoły mlekowe (bądź tkanki nowotworowe) białko podobne do parathormonu (PTH-RP). Nie mieli jednak pojęcia, co i gdzie reguluje sekrecję PTH-RP. Okazało się, że to serotonina, znana lepiej jako hormon szczęścia.
      Naukowcy z University of Cincinnati wpadli na trop roli spełnianej przez serotoninę, badając komórki oraz tkanki mysie, krowie i ludzkie. Co ważne, zidentyfikowali też receptory, na które hormon oddziałuje. Co to oznacza z punktu widzenia praktyka? Amerykanie uważają, że dzięki temu będzie można opracować leki zapobiegające utracie masy kostnej (nadmiernej resorpcji kości).
      Wiedząc, że antydepresanty, które ograniczają wychwyt zwrotny serotoniny (SSRI), wywołują także zmniejszenie masy kostnej, naukowcy zaplanowali eksperyment ze zmodyfikowanymi genetycznie myszami. Nie wytwarzały one wystarczających ilości serotoniny i w ich gruczołach mlecznych było znacznie mniej PTH-RP niż w gruczołach zdrowych gryzoni w czasie laktacji.
      Potraktowane serotoniną mysie i krowie gruczoły zwiększały ekspresję PTH-RP, odpowiednio, 8- i 20-krotnie. Gdy hormon dodano do 3 linii komórek ludzkiego raka piersi, ekspresja białka podobnego do parathormonu również wzrosła 20-krotnie.
      Podczas badań na modyfikowanych genetycznie myszach i komórkach mysich gruczołów mlekowych sprawdzano, który z receptorów serotoniny odpowiada za regulację wydzielania PTH-RP. Choć wcześniejsze studia wskazywały, że dla niektórych funkcji gruczołów mlecznych istotny jest receptor 5-HT7, eksperyment akademików z University of Cincinnati sugerował, że tym razem chodzi o receptor 5-HT2.
    • By KopalniaWiedzy.pl
      Rośliny przewidują porę dnia, kiedy napadną na nie chmary głodnych owadów i przygotowują się, by je odstraszyć, uruchamiając hormonalną broń.
      Kiedy przechodzisz obok roślin, nie wyglądają, jakby cokolwiek robiły. Intrygująco jest obserwować całą tę aktywność na poziomie genetycznym. To jak przyglądanie się oblężonej fortecy w stanie pełnej mobilizacji - opowiada prof. Janet Braam z Rice University, dodając, że naukowcy od dawna wiedzieli, że rośliny dysponują zegarem biologicznym, który pozwala im mierzyć czas bez względu na warunki oświetleniowe. Liście niektórych roślin podążają np. za przesuwającym się po nieboskłonie słońcem, a nocą "resetują się", zwracając się w kierunku wschodu.
      Ostatnimi czasy biolodzy ustalili, że aż ok. 1/3 genów rzodkiewnika pospolitego (Arabidopsis thaliana) jest aktywowanych przez rytm okołodobowy. Zastanawialiśmy się, czy niektóre z tych regulowanych rytmem okołodobowym genów mogą pozwalać na przewidywanie ataków owadów w sposób analogiczny do przewidywania świtu - opowiada Michael Covington (obecnie z Uniwersytetu Kalifornijskiego w Davis).
      Aby znaleźć odpowiedź na to pytanie, studentka Danielle Goodspeed zaprojektowała eksperyment. Wykorzystała 12-godzinny cykl świetlny. W ten sposób zaprogramowała zegary biologiczne roślin i gąsienic błyszczki ni (Trichoplusia ni), które żywią się liśćmi A. thaliana. Połowę roślin umieszczono z gąsienicami przyzwyczajonymi do regularnego i takiego samego jak one cyklu dzień-noc, natomiast reszta rzodkiewników stykała się z gąsienicami z przesunięciem faz - ich zegary były ustawione na dzień, który przypadał na porę będącą dla rzodkiewników nocą itd.
      Odkryliśmy, że rośliny wyregulowane na tę samą fazę co gąsienice błyszczki były stosunkowo oporne, natomiast okazy z przesunięciem faz ulegały zniszczeniu przez żerujące na nich gąsienice.
      Razem z Wassimem Chehabem Goodspeed badała akumulację hormonu jasmonianu, wykorzystywanego przez rośliny do wytwarzania metabolitów wpływających na żerowanie owadów (pod wpływem uszkodzenia mechanicznego następuje skok syntezy jasmonidów, a następnie uruchomienie biosyntezy enzymów odpowiedzialnych za gromadzenie się fitoaleksyn oraz inhibitorów proteinaz; blokują one aktywność proteinaz owadów, którym odcina się w ten sposób dostęp do białek rośliny). Naukowcy stwierdzili, że w ciągu dnia, gdy gąsienice T. ni są najbardziej napastliwe, rzodkiewniki nasilają produkcję hormonu. Okazało się, że rośliny wykorzystują zegar biologiczny do wytwarzania innych związków obronnych, np. zapobiegających infekcjom bakteryjnym.
    • By KopalniaWiedzy.pl
      Dzięki nowoczesnemu sprzętowi guzy gruczołu krokowego można wykryć wcześniej niż kiedykolwiek, gorzej mają się jednak sprawy ze stwierdzeniem, czy są one łagodne, czy złośliwe. Może się to zmienić dzięki środkowi kontrastowemu z greliną, którą połączono z fluorescencyjnym znacznikiem (grelina jest lepiej znana jako hormon głodu).
      Złośliwe guzy pochłaniają o wiele więcej greliny niż zwykłe komórki prostaty. Doktorzy John Lewis i Len Luyt z Lawson Health Research Institute uważają, że w ten właśnie sposób można zidentyfikować agresywną postać choroby.
      Zespół testował czynnik kontrastowy swojego pomysłu na próbkach tkankowych pobranych od pacjentów z rakiem gruczołu krokowego. Okazało się, że sygnał z komórek złośliwych guzów był niemal 5-krotnie silniejszy niż z komórek guzów łagodnych i komórek niezmienionych chorobowo.
      Testy obrazowe, takie jak pozytonowa tomografia emisyjna czy rezonans magnetyczny, są wykorzystywane do nieinwazyjnego diagnozowania wielu nowotworów, jednak w przypadku raka prostaty biopsja nadal pozostaje najlepszą opcją. Nasze studium sugeruje, że obrazowanie z wykorzystaniem greliny i w tym przypadku pozwala na nieinwazyjną biopsję oraz wcześniejsze wykrycie ewentualnych przerzutów - podkreśla dr Lewis.
      Szczegółowe wyniki badań ukażą się w najbliższym numerze pisma The Prostate.
    • By KopalniaWiedzy.pl
      Dzieci obznajomione z przekąskami oczekują, że będą one bardziej sycące, niż sugerowałaby to objętość. Ich rówieśnicy, którzy rzadko raczą się batonikami czy chipsami, opierają się natomiast nie na właściwościach energetycznych, ale np. rozmiarach, co może prowadzić do przejadania się zbyt dużymi porcjami.
      Podczas eksperymentów zespół z Uniwersytetu Bristolskiego zamierzał sprawdzić, czy obycie z przekąskami (np. w wyniku ich częstego spożywania) wpływa na oczekiwania dzieci dotyczące sytości.
      Z wcześniejszych badań na dorosłych wiemy, że mamy przekonania i oczekiwania, jak bardzo sycące będą pokarmy i że oczekiwania te mogą się zmienić. Co więcej, są one istotnymi wyznacznikami wyboru wielkości porcji; wybieramy np. mniejsze porcje czegoś, o czym sądzimy, że jest bardziej sycące – wyjaśnia dr Charlotte Hardman.
      W studium akademików z Bristolu wzięło udział siedemnaścioro dzieci w wieku od 11 do 12 lat. Ich zadanie polegało na ocenie stopnia sytości wywoływanego przez wyświetlane na ekranie komputera przekąski. Badani mieli też powiedzieć, jak często po nie sięgają.
      Okazało się, że obycie pomagało dzieciom w dokonywaniu prawidłowych oszacowań, co pozwalało właściwie dobrać wielkość porcji. Dzieci dostające przekąski jedynie od czasu do czasu polegały głównie na wyglądzie produktu, np. objętości. Wg nich, by się nasycić, trzeba sięgnąć po większą porcję.
      Prezentowanie dzieciom szerokiego wyboru przekąsek może utrudniać ocenę stopnia nasycenia nimi. Nasze studium sugeruje, że jeśli rodzice decydują się na wprowadzenie przekąsek do menu swoich pociech, powinni przeprowadzić wstępną selekcję i później się jej trzymać – podsumowuje Hardman.
    • By KopalniaWiedzy.pl
      Podwyższony poziom wolnych rodników w podwzgórzu bezpośrednio lub pośrednio hamuje apetyt u otyłych myszy, aktywując odpowiadające za uczucie sytości neurony szlaku melanokortynowego.
      Mamy do czynienia z obosiecznym mieczem, bo jak tłumaczy prof. Tamas Harvath z Uniwersytetu Yale, z jednej strony musimy mieć te cząsteczki sygnałowe, by przestać jeść. Z drugiej jednak, jeśli ekspozycja jest długotrwała, wolne rodniki mogą uszkadzać komórki i przyczyniać się do starzenia.
      To dlatego w odpowiedzi na stałe przejadanie się włącza się mechanizm komórkowy związany z zahamowaniem powstawania wolnych rodników. Podczas gdy mechanizm ten, wspierany przez wzrost organelli komórkowych zwanych peroksysomami, zabezpiecza przed uszkodzeniem [DNA] komórek, jednocześnie zmniejsza zdolność odczuwania sytości po posiłku – dodaje szefowa amerykańskiego zespołu prof. Sabrina Diano.
      Amerykanie zauważyli, że po jedzeniu w mysich neuronach odpowiedzialnych za zahamowanie przejadania występowało wysokie stężenie wolnych rodników. Proces ten jest kontrolowany przez leptynę (hormon wytwarzany głównie przez białą tkankę tłuszczową) i glukozę, które stanowią dla mózgu sygnały modulujące pobieranie pokarmu. W czasie posiłku poziomy leptyny i glukozy wzrastają. Rośnie też poziom wolnych rodników. Naukowcy zauważyli jednak, że u myszy z otyłością wywołaną nieodpowiednią dietą występuje leptynooporność. Dodatkowo zawartość wolnych rodników w komórce jest ograniczana przez peroksysomy, co nie dopuszcza do odczuwania sytości i prowadzi do dalszego przejadania.
      Obecnie akademicy chcą ustalić, czy u otyłych jednostek można wywołać uczucie sytości, nie prowadząc jednocześnie do podwyższonego stężenia wolnych rodników w mózgu i innych częściach ciała.
×
×
  • Create New...