Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jak topik wytrzymuje pod wodą ponad dobę

Rekomendowane odpowiedzi

Otoczka powietrzna, dzięki której pająk topik (Argyroneta aquatica) spędza większość życia pod wodą, działa jak skrzela, ekstrahując z wody rozpuszczony tlen i rozpraszając dwutlenek węgla.

Naukowcy doszli do tego, mierząc stężenie tlenu wewnątrz i poza siecią. Dysponując takim dzwonem nurkowym, topik może zostawać pod wodą przez całą zimę, a w innych porach roku, oszczędzając siły, przez ponad dobę, podczas gdy inne oddychające powietrzem atmosferycznym owady muszą się wynurzać co kilka minut.

Wcześniej sądzono, że topiki wytrzymują pod wodą od 20 do 40 min, jednak najnowsze badania prof. Rogera Seymoura z Uniwersytetu w Adelajdzie i doktora Stefana Hetza z Uniwersytetu Humboldtów wykazały, że sprawy mają się zgoła inaczej.

A. aquatica tworzy pomiędzy liśćmi podwodnych roślin kokon w kształcie otwartego od dołu globusa. Później pająk napełnia go pojedynczym bąblem powietrza. Wg Seymoura, przeważnie ma on wielkość paznokcia palca serdecznego. Naukowcy dodają jednak, że samice robią bańki pokaźniejszych rozmiarów, które można dalej powiększać w razie potrzeby, np. by pomieścić ofiarę lub jaja. Dodatkowo pająki powiększają bąble, gdy poziom tlenu w wodzie spada.

Bańka powietrza w rzeczywistości wystaje pomiędzy oczkami sieci, powstaje więc rodzaj interfejsu powietrze-woda. Podczas eksperymentów naukowcy posłużyli się tlenoczułym światłowodem. Dzięki temu mogli ocenić objętość gazu w dzwonie nurkowym oraz poziom wymiany gazowej między wodą a bańką. Dodatkowo zmierzono zużycie tlenu przez owada. Odkryliśmy, że w porównaniu do tego, co było na początku, z wody może pochodzić aż 8-krotnie więcej tlenu. Bańka działa więc jak bardzo skuteczne skrzela fizyczne, czyli dyfuzyjne. Jako że topik prowadzi raczej osiadły tryb życia, bąbel odpowiada jego potrzebom oddechowym nawet w rozgrzanej stojącej wodzie.

Raz na dobę topik musi donieść świeżego powietrza, ponieważ bańka kurczy się wskutek dyfundowania azotu do otaczającej wody. Transport odbywa się na odwłoku i tylnych nogach. Dzięki temu, że pająk tak rzadko się wynurza i siedzi spokojnie, łatwiej mu polować, poza tym sam unika stania się czyjąś ofiarą. Seymour uważa, że być może ze względów kamuflujących topik przygotowuje swoją sieć nocą.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Pewnego razu Xinhua Fu, naukowiec z Uniwersytetu Rolniczego Huazhong w chińskim Wuhan, zauważył, że w sieci aktywnych nocą pająków Araneus ventricosus łapią się niemal wyłącznie samce świetlikowatych z gatunku Abscondita terminalis. W sieciach nie było samic. Zaintrygowany tym spostrzeżeniem, postanowił bliżej przyjrzeć się temu zjawisku. Wraz z zespołem odkrył, że to pająki wymuszają na złapanych świetlikach nadawanie sygnałów, które przyciągają więcej ofiar.
      Obie płcie Abscondita terminalis nadają różne sygnały świetlne. Samce, by przyciągnąć samice, wysyłają wielokrotne impulsy za pomocą dwóch plamek świetlnych. Samice wabią samce pojedynczymi impulsami z jednej plamki. Samce aktywnie szukają samic latając, a te odpowiadają, czekając aż samiec przyleci.
      Fu zaczął podejrzewać, że pająki przyciągają samce świetlików w jakiś sposób manipulując ich zachowaniem. We współpracy z Daiqinem Li oraz Shichangiem Zhang z Uniwersytetu Hubei przeprowadził obserwacje polowe, przyglądając się pająkom i świetlikom. Okazało się, że w sieci łapie się więcej samców, gdy pająk jest w pobliżu niż wówczas, gdy go na sieci nie ma. Działo się tak dlatego, że gdy pająk był w pobliżu samce świetlików zmieniały nadawane sygnały na takie, przypominające sygnały samic. Naukowcy wykluczyli tym samym hipotezę, że zmiana sygnału zachodzi pod wpływem stresu, który ma miejsce, gdy świetlik złapie się w sieć. Istotna była tutaj obecność pająka.
      Bliższa analiza wykazała, że pająki manipulują sygnałami świetlików poprzez sekwencje owijania nicią i gryzienia swoich ofiar. Tak traktowany samiec świetlika zaczyna nadawać sygnały typowe dla samic i przyciąga w ten sposób kolejne samce, które łapią się w sieć. Bez kolejnych badań naukowcy nie są w stanie powiedzieć, czy to jad pająka czy sam akt gryzienia wywołuje u samców zmianę wzorca impulsów świetlnych.
      Wszystko natomiast wskazuje na to, że zachowanie pająka jest uruchamiane przez impulsy świetlne samca. Gdy naukowcy zakryli narządy świetlne samców, pająki nie wymuszały na nich zmiany trybu świecenia.
      Niewykluczone, że w naturze istnieje o wiele więcej tego typu interakcji drapieżnik-ofiara, w których drapieżnik wymusza na ofierze zachowania przyciągające kolejne ofiary.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pająki są uznawane za klasyczne drapieżniki owadożerne, tymczasem okazuje się, że ich dieta jest o wiele bardziej złożona i od czasu do czasu decydują się one nawet na posiłek wegetariański.
      Naukowcy już od jakiegoś czasu zdawali sobie sprawę, że niektóre pająki starają się wzbogacać menu rybami, żabami, a nawet nietoperzami. Teraz zespół z Uniwersytetu w Bazylei, Brandeis University oraz Uniwersytetu w Cardiff wykazał, że stawonogi te jadają również rośliny. Biolodzy przejrzeli pod tym kątem literaturę przedmiotu. Dzięki ich systematycznemu przeglądowi udowodniono, że różnego rodzaju rośliny (np. storczyki, drzewa, trawy czy paprocie) wchodzą w skład diety aż 10 rodzin pająków. Zjadane są różne ich elementy: nektar, pyłek, nasiona, tkanka liści, spadź i sok mleczny.
      Najważniejszą grupą pająków o wegetariańskich zwyczajach są skakunowate (Salticidae). To im przypisano aż 60% przypadków roślinożerności udokumentowanych w studium. Takim zwyczajom wydaje się sprzyjać kilka czynników: życie wśród roślin, mobilność, a także świetna zdolność wykrywania odpowiedniego pożywienia roślinnego.
      Pająki żywiące się roślinami występują na wszystkich kontynentach poza Antarktydą. Opisywane zachowanie jest jednak częściej dokumentowane w cieplejszych strefach. Autorzy publikacji z Journal of Arachnology dywagują, że może się tak dziać, bo spora liczba doniesień o wegetariańskiej diecie dotyczy nektaru, a rośliny produkujące duże jego ilości są tam bardziej rozpowszechnione.
      Zdolność pająków do pozyskiwania składników odżywczych z roślin poszerza ich bazę pokarmową. Może to być mechanizm, który pozwala przetrwać okresy niedoboru owadów. Ponadto dywersyfikacja jest korzystna z żywieniowego punktu widzenia, bo optymalizuje podaż dietetyczną - podsumowuje Martin Nyffeler z Uniwersytetu w Bazylei.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pająki z gatunku Argyroneta aquatica całe życie spędzają pod wodą, mimo że są przystosowane do oddychania powietrzem atmosferycznym. Jak to jest możliwe? Otóż ich ciała pokryte są milionami hydrofobowych włosków, które więżą powietrze wokół ciała pająka, zapewniając nie tylko zapas do oddychania, lecz służąc też jako bariera pomiędzy wodą a płucotchawkami zwierzęcia. Ta cienka warstwa powietrza zwana jest plastronem, a naukowcy od dziesięcioleci próbowali ją odtworzyć, by uzyskać materiał, który po zanurzeniu w wodzie będzie odporny na jej negatywne oddziaływanie, czy to na korozję czy na osadzanie na powierzchni bakterii lub glonów. Dotychczas jednak uzyskane przez człowieka plastrony rozpadały się pod wodą w ciągu kilku godzin.
      Naukowcy z  Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), Wyss Institute for Biologically Inspired Engineering at Harvard, Friedrich-Alexander-Universität Erlangen-Nürnberg w Niemczech Germany oraz fińskiego Aalto University poinformowali właśnie o uzyskaniu plastronu, który pozostaje stabilny pod wodą przez wiele miesięcy. Superhydrofobowy materiał, który odpycha krew i wodę, zapobiega osadzaniu się bakterii i organizmów morskich takich jak małże, może znaleźć bardzo szerokie zastosowania zarówno w medycynie, jak i przemyśle.
      Jeden z głównych problemów z uformowaniem się plastronu polega na tym, że potrzebna jest szorstka powierzchnia. Jak włoski na Argyroneta aquatica. Jednak nierówności na powierzchni powodują, że jest ona mechanicznie niestabilne, podatna na niewielkie zmiany temperatury, ciśnienia i niedoskonałości samej powierzchni. Dotychczasowe techniki wytwarzania powierzchni superhydrofobowych brały pod uwagę dwa parametry, a to nie zapewniało dostatecznej ilości danych o stabilności powietrznego plastronu umieszczonego pod wodą. Dlatego naukowcy z USA, Niemiec i Finlandii musieli najpierw zbadać, jakie jeszcze dane są potrzebne. Okazało się, że muszą uwzględniać nierówności powierzchni, właściwości molekuł na powierzchni, sam plastron, kąt styku między powietrzem a powierzchnią i wiele innych czynników. Dopiero to pozwoliło przewidzieć, jak powietrzny plastron zachowa się pod wodą.
      Wykorzystali więc stworzona przez siebie metodę obliczeniową i za pomocą prostych technik produkcyjnych, wykorzystali niedrogi stop tytanu do stworzenie powierzchni aerofilnej, na której tworzył się powietrzny plastron. Badania wykazały, że dzięki niemu zanurzony w wodzie materiał pozostaje suchy przez tysiące godzin dłużej, niż podczas wcześniejszych eksperymentów.
      Wykorzystaliśmy metodę opisu, którą teoretycy zasugerowali już przed 20 laty i wykazaliśmy, że nasza powierzchnia jest stabilna. Oznacza to, że uzyskaliśmy nie tylko nowatorską, ekstremalnie trwałą powierzchnię hydrofobową, ale mamy też podstawy do konstruowania takich powierzchni z różnych materiałów, mówi Alexander B. Tesler z Friedrich-Alexander-Universität Erlangen-Nürnberg.
      Naukowcy stworzyli odpowiednią powierzchnię, a następnie wyginali ją, skręcali, polewali zimną i gorącą wodą, pocierali piaskiem i stalą, by pozbawić ją właściwości aerofilnych. Mimo to utworzył się na niej plastron, który przetrwał 208 dni zanurzenia w wodzie i setki zanurzeń we krwi. Plastron taki znacząco zmniejszył wzrost E.coli, liczbę wąsonogów przyczepiających się do powierzchni i uniemożliwił przyczepianie się małży.
      Nowo opracowana powierzchnia może znaleźć zastosowanie w opatrunkach, zmniejszając liczbę infekcji po zabiegach chirurgicznych czy w biodegradowalnych implantach. Przyda się też do zapobiegania korozji podwodnych instalacji. Być może w przyszłości uda się ją połączyć z opracowaną na SEAS superśliską warstwą ochronną SLICK (Slippery Liquid Infused Porous Surfaces), co jeszcze lepiej powinno chronić całość przed wszelkimi zanieczyszczeniami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Inżynierowie z University of Massachusetts Amherst wykazali, że z niemal każdego materiału można stworzyć urządzenie pobierające energię elektryczną z pary wodnej zawartej w powietrzu. Wystarczy utworzyć w tym materiale nanopory o średnicy mniejszej niż 100 nanometrów. To niezwykle ekscytujące. Otworzyliśmy drogę do wytwarzania czystej energii z powietrza, cieszy się główny autor artykułu opisującego badania, świeżo upieczony inżynier Xiaomeng Liu.
      Powietrze zawiera olbrzymie ilości energii elektrycznej. Weźmy na przykład chmurę, która jest niczym innym jak masą kropelek wody. Każda z tych kropelek zawiera ładunek elektryczny i w odpowiednich warunkach dochodzi do wyładowania. Nie potrafimy jednak pozyskiwać energii z tych wyładowań. Natomiast my stworzyliśmy niewielką chmurę, która wytwarza energię w sposób przewidywalny, możemy więc ją zbierać, dodaje profesor Jun Yao.
      U podstaw najnowszego odkrycia znajduje się praca Yao i Dereka Levleya, którzy w 2020 roku wykazali, że możliwe jest nieprzerwane pozyskiwanie energii elektrycznej z powietrza za pomocą specjalnego materiału złożonego z nanokabli zbudowanych z białek bakterii Geobacter sulfureducens. Po tym, jak dokonaliśmy tego odkrycia zauważyliśmy, że tak naprawdę zdolność pozyskiwania energii z powietrza jest wbudowana w każdy materiał, który posiada pewne właściwości, mówi Yao. Wystarczy, by materiał ten zawierał pory o średnicy mniejszej niż 100 nanometrów, czyli ok. 1000-krotnie mniejszej niż średnica ludzkiego włosa.
      Dzieje się tak dzięki parametrowi znanemu jako średnia droga swobodna. Jest to średnia odległość, jaką przebywa cząsteczka przed zderzeniem z inną cząsteczką. W tym wypadku mowa o cząsteczce wody w powietrzu. Średnia droga swobodna wynosi dla niej około 100 nanometrów. Yao i jego zespół zdali sobie sprawę, że mogą wykorzystać ten fakt do pozyskiwania energii elektrycznej. Jeśli ich urządzenie będzie składało się z bardzo cienkiej warstwy dowolnego materiału pełnego porów o średnicy mniejszej niż 100 nanometrów, wówczas molekuły wody będą wędrowały z górnej do dolnej części takiego urządzenia. Po drodze będą uderzały w krawędzie porów. Górna część urządzenia będzie bombardowana większą liczbą cząstek wody, niż dolna. Pojawi się w ten sposób nierównowaga ładunków jak w chmurze, której górna część jest bardziej naładowana niż dolna. W ten sposób powstanie bateria, która będzie działała dopóty, dopóki w powietrzu jest wilgoć.
      To bardzo prosty pomysł, ale nikt wcześniej na niego nie wpadł. Otwiera to wiele nowych możliwości, mówi Yao. Jako, że tego typu urządzenie można zbudować praktycznie z każdego materiału, można je umieścić w różnych środowiskach. Możemy wybrazić sobie takie baterie z jednego materiału działające w środowisku wilgotnym, a z innego – w suchym. A że wilgoć w powietrzu jest zawsze, to urządzenie będzie działało przez całą dobę, niezależnie od pory dnia i roku.
      Poza tym, jako że powietrze rozprzestrzenia się w trzech wymiarach, a my potrzebujemy bardzo cienkiego urządzenia, cały system bardzo łatwo można skalować, zwiększając jego wydajność i pozyskując nawet kilowaty mocy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mieszkające w naszych domach pająki unikają powierzchni, po których przeszły mrówki pewnego agresywnego gatunku. To wskazuje, że pozostawiają one po sobie jakiś chemiczny ślad. A ten można by wykorzystać do stworzenia ekologicznych środków odstraszających pająki, dzięki którym np. ludzie z arachnofobią mogliby czuć się bezpieczniej w swoich domach.
      Andreas Fischer z kanadyjskiego Simon Fraser University specjalizuje się w badaniu feromonów pająków. Poszukuje też praktycznych sposobów na utrzymanie zdrowego ekosystemu, przy jednoczesnym zniechęceniu pająków do odwiedzania ludzkich domów. Uczony mówi, że z jednej strony mamy pestycydy, które zabijają wszystko i zaburzają równowagę w ekosystemie, z drugiej zaś domowe porady, takie jak stosowanie skórki cytrynowej czy olejku migdałowego, w żaden sposób nie działają na pająki.
      Ostatnio Fischer zwrócił uwagę na prace innych naukowców, z których wynikało, że tam, gdzie jest więcej mrówek, występuje mniej pająków.
      Uczony zebrał mrówki z trzech różnych gatunków oraz samice czterech gatunków pająków często występujących w północnoamerykańskich domach. Najpierw przez 12 godzin mrówki przebywały na papierowym filtrze w szklanej klatce. Mrówki dobrano równo pod względem wagi, co oznacza, że w przypadku jednego gatunku do eksperymentu użyto 43 mrówek, w przypadku zaś innego – zaledwie trzech.
      Po 12 godzinach mrówki z klatki usuwano i na 24 godziny umieszczano w niej samice pająków, obserwując, jak się zachowuje. Okazało się, że większość czarnych wdów (Latrodectus hesperus), fałszywych czarnych wdów (Steatoda grossa) oraz pająków hobo (Eratigena agrestis), unika papierowego filtra, po którym chodziły wścieklice zwyczajne (Myrmica rubra). Podobne, chociaż nie tak silne zachowanie, zauważono u krzyżaka ogrodowego (Araneus diadematus).
      Fischer sądzi, że pająki mogą unikać mrówek, gdyż wścieklice zwyczajne są szczególnie agresywne, mogą otaczać i zabijać pająki, które weszły na ich teren. Pająki mogły więc wyewoluować tak, by unikać tego gatunku. Hipoteza ta jest tym bardziej uprawniona, że pająki nie unikały miejsc, po których chodziły mrówki z gatunków hurtnica pospolita (Lasius niger) i Camponotus modoc.
      Uczony i jego koledzy nie wiedzą jeszcze, co konkretnie odstrasza pająki. Mają jednak nadzieję, że wkrótce się dowiedzą. A gdy odnajdą roznoszony przez mrówki środek chemiczny, którego boją się pająki, chcą rozpocząć eksperymenty nad stworzeniem jego wersji do użycia w domu.
      Fischer nie zaleca jednocześnie zbierania mrówek i chronienia w ten sposób domów przed pająkami. Ugryzienie wścieklicy zwyczajnej jest bardzo bolesne, a mrówek trudno jest się pozbyć. Stałyby się w domu większym problemem niż pająki, stwierdza.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...