Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Moneta - zmiennofazowy SSD przyszłością komputerów?

Recommended Posts

Na Uniwerstytecie Kalifornijskim w San Diego (UCSD) trwają prace nad niezwykle szybkim systemem pamięci nieulotnej. Już w tej chwili prototypowy system Moneta jest kilkukrotnie szybszy od najbardziej wydajnych urządzeń SSD.

Dzięki optymalizacji sprzętu i oprogramowania Moneta charakteryzuje się 16-krotnie krótszym czasie dostępu przy jednoczesnym zmniejszeniu obciążenia oprogramowania o 60%. Moneta jest przystosowany do sekwencyjnego transferu danych rzędu 2,8 GB/s, pozwala też na przeprowadzenia 541 000 operacji I/O na 4-kilobajtowych blokach danych w ciągu sekundy. System zapisuje 512 bajtów w ciągu zaledwie 9 mikrosekund, czyli 5,6 raza szybciej niż SSD.

Na system Moneta składają się 64 gigabajty pamięci zmiennofazowych wykonanych z chalkogenidów. 

Jako społeczeństwo zbieramy dane bardzo, bardzo szybko, znacznie szybciej niż jesteśmy w stanie przeanalizować je za pomocą współczesnych technologii bazujących na dyskach twardych. Pamięci zmiennofazowe połączone z napędami SSD pozwolą nam na szybszy dostęp do danych, wykorzystanie tego, że je zgromadziliśmy. To może być rewolucyjne osiągnięcie - mówi profesor Steven Swanson, dyrektor Non-Volatile Systems Lab, w którym powstał Moneta.

System korzysta z pierwszej generacji kości PCM produkcji Micron Technology, które są zdolne do odczytu dużych bloków danych z prędkością 1,1 gigabajta na sekundę i zapisu z prędkością 371 MB/s. Przy małych blokach odczyt wynosi 327 MB/s, a zapis - 91 MB/s.

Swanson mówi, że druga generacja Monety powinna powstać w ciągu 6-9 miesięcy. Zdaniem naukowca podobne systemy danych mogą trafić do rąk użytkowników w ciągu najbliższych kilku lat. Warunkiem jest dalsze udoskonalenie pamięci zmiennofazowych.

Odkryliśmy, że można stworzyć znacznie szybsze urządzenie do przechowywania danych, ale żeby wykorzystać jego możliwości konieczne jest przeprowadzenie zmian w oprogramowaniu zarządzającym tego typu urządzeniami. Systemy przechowywania danych przez ostatnie 40 lat ewoluowały pod dyktando dysków twardych, a dyski są bardzo, bardzo powolne. Zaprojektowanie systemu przechowywania danych, który w pełni wykorzysta technologie takie jak PCM wymaga przemyślenia niemal każdego aspektu dotyczącego zarządzania danymi i dostępu do nich. Moneta pozwala nam zobaczyć, jak będzie wyglądało przechowywanie danych w przyszłości i pozwala na przemyślenie architektury - mówi Swanson.

Share this post


Link to post
Share on other sites

hehe.. wszyscy pisza o chalkogenidkach, a nikt konkretnie. same chalkogenidki to potezna i zroznicowana grupa materialow. ci bardziej zaangazowani pisza o metalicznych stopach.

 

byc moze kiedys juz o tym pisalem. niemcy, rowniez na chalkogenidkach (tutaj akurat germanu*), przeprowadzili badania zapisu/odczytu typu PCM. ich czasy byly liczone w skali nanosekund (chyba od 1 do 16 ns). wynikaloby z tego, ze glowny problem tkwi prawdopodobnie w szybkosci dostepu (tranferze impulsu) do takiego elementu.

 

nie ma tutaj informacji o mozliwej gestosci zapisu. nie wiem jakie rozmiary ma typowa komorka odpowiadajaca 1 bajtowi. o ile dobrze pamietam rozmiar bajtu tych niemieckich dochodzil do 20x20 nm^2.

____

* obecnie trwaja prace nad magnetycznymi wlasnosciami takich materialow. dodajac jony magnetyczne mozemy operowac dodatkowa wlasciwoscia. wtedy oprocz zmiany fazy krystalicznej istnieje jeszcze mozliwosc zmiany namagnesowania.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      IBM pracuje nad najbardziej pojemnym magazynem danych w historii. W laboratoriach w Almaden powstaje 120-petabajtowy system przechowywania danych. Będzie się on składał z 200 000 wspólnie pracujących dysków twardych. W sumie ma on pomieścić biliard plików, a jego twórcy mają nadzieję, że wspomoże symulowanie tak złożonych systemów jak klimat i pogoda. Same informacje dotyczące położenia poszczególnych plików, ich nazw oraz atrybutów zajmą około 2 petabajtów.
      Magazyn danych powstaje na potrzeby jednego z klientów IBM-a, który zamówił też nowy superkomputer do symulowania procesów zachodzących w przyrodzie. Bruce Hillsberg, dyrektor ds. badań nad systemami przechowywania danych, który odpowiada za powyższy projekt mówi, że doświadczenia zdobyte podczas tworzenia takiego systemu przydadzą się do opracowania podobnych komercyjnych magazynów danych. Jego zdaniem w ciągu najbliższych kilku lat firmy oferujące chmury obliczeniowe zaczną składać zamówienia na podobne systemy przechowywania danych.
      Inżynierowie IBM-a mają do wykonania bardzo ambitne zadanie. Obecnie największe systemy przechowywania danych liczą sobie około 15 petabajtów.
      Na potrzeby obecnego zamówienia IBM opracował nowy sprzęt i oprogramowanie. Wiadomo, że całość będzie chłodzona wodą, a inżynierowie zastanawiają się, w jaki sposób umieścić dyski tak, by zajmowały jak najmniej miejsca. Kolejnym poważnym wyzwaniem jest radzenie sobie z nieuniknionymi awariami poszczególnych dysków. Wykorzystano standardową technikę przechowywania licznych kopii danych na różnych urządzeniach, ale jednocześnie udoskonalono ją tak, by mimo awarii poszczególnych dysków całość pracowała z maksymalną wydajnością.
      Gdy jakiś dysk ulegnie awarii, to po jego wymianie system pobierze dane z innych dysków tak, by stworzyć dokładną kopię zepsutego nośnika. Wgrywanie danych ma odbywać się na tyle wolno, by nie wpływało na wydajność systemu. Jeśli natomiast jednocześnie zepsuje się kilka sąsiednich dysków, tworzenie ich kopii ma przebiegać bardzo szybko, by uniknąć niebezpieczeństwa, że dojdzie do kolejne awarii, która spowoduje całkowitą utratę danych. Hillsberg ocenia, że dzięki takim rozwiązaniom system nie utraci żadnych danych przez około milion lat, a jednocześnie nie wpłynie negatywnie na wydajność superkomputera.
      Magazyn będzie wykorzystał system plików GPFS, który powstał w Almaden na potrzeby superkomputerów. System ten zapisuje wiele kopii plików na różnych nośnikach, co pozwala na błyskawiczny ich odczyt, ponieważ różne fragmenty pliku mogą być później odczytywane jednocześnie z różnych dysków. Ponadto umożliwia on informacji o dokładnym położeniu każdego pliku, dzięki czemu uniknięto konieczności skanowania dysków w poszukiwaniu potrzebnych plików. W ubiegłym miesiącu, korzystając z systemu GPFS inżynierowe IBM-a zaindeksowali 10 miliardów plików w ciągu zaledwie 43 minut, znacznie poprawiając poprzedni rekord wynoszący miliard plików w trzy godziny.
    • By KopalniaWiedzy.pl
      W laboratoriach IBM-a dokonano przełomowego postępu na drodze do stworzenia praktycznych pamięci zmiennofazowych (PCM). Ekspertom Błękitnego Giganta udało się przechować przez dłuższy czas wiele bitów informacji w pojedynczej komórce pamięci. To z kolei daje nadzieję, że za około 5 lat PCM zaczną się upowszechniać.
      Naukowcy z laboratoriów w Zurichu opracowali nową technikę modulacji, która toleruje samoistne zmiany oporności, co w dłuższym czasie prowadzi do błędów odczytu danych. Dotychczas udawało się stabilnie przechowywać tylko pojedynczy bit danych w komórce.
      W PCM dane przechowywane są dzięki zmianie oporności, do której dochodzi podczas zmiany fazowej materiału z krystalicznej w amorficzną. Materiał umieszczony jest pomiędzy dwiema elektrodami. Przepuszczenie przez nie prądu powoduje podgrzanie materiału i zmianę fazy. Ponadto, w zależności od przyłożonego napięcia można decydować, jaka część materiału przejdzie zmianę, co z kolei bezpośrednio wpływa na oporność poszczególnych komórek pamięci. Właściwość tę wykorzystali naukowcy IBM-a, którzy podczas swoich eksperymentów użyli czterech różnych poziomów oporności do przechowania czterech kombinacji bitów - 00, 01, 10 i 11. Mogli to osiągnąć, dzięki ulepszeniu procesu odczytywania i zapisywania danych. Aby uniknąć niepożądanych różnic w oporności, spowodowanych budową komórki czy niedoskonałościami materiału, opracowali sposób płynnego manipulowania napięciem w zależności od założonego efektu. Przykładamy napięcie bazując na odchyleniach od zakładanego poziomu i wówczas mierzymy oporność. Jeśli wymagany poziom oporności nie został osiągnięty, impuls elektryczny jest wysyłany ponownie i znowu mierzymy oporność. Powtarzamy to tak długo, aż osiągniemy jej wymagany poziom - mówi doktor Haris Pozidis, dyrektor Memory and Probe Technologies w IBM Research.
      Pomimo używania takiej techniki, największe opóźnienie w zapisie danych wyniosło około 10 mikrosekund, co oznacza, że w najgorszym wypadku zapis danych w PCM jest 100-krotnie szybszy niż w pamięciach flash.
      Z kolei aby bezbłędnie odczytać dane po dłuższym czasie konieczne było poradzenie sobie ze zmianami oporności, jakie zachodzą w materiale amorficznym. Ze względu na budowę atomową takiego materiału, jego oporność z czasem rośnie, co wywołuje błędy w odczycie danych. Eksperci IBM-a opracowali technikę kodowania odporną na te zmiany. Wykorzystuje ona fakt, że właściwości komórek z danymi nie zmieniają się w czasie względem innych komórek o innej oporności. Dzięki temu byli w stanie odczytać po dłuższym czasie dane z 200 000 komórek pamięci zmiennofazowej wykonanej w technologii 90 nanometrów. Testy trwały pięć miesięcy, dowodząc możliwości długotrwałego wiarygodnego przechowywania danych.
    • By KopalniaWiedzy.pl
      Firma analityczna Gartner twierdzi, że w przyszłym roku dyski SSD trafią do mainstreamu sprzedaży. Ma się tak stać dzięki spadkowi cen tych urządzeń. Gartner prognozuje, że w 2012 cena 1 gigabajta SSD wyniesie 1 dolara. To oznacza, że 64-gigabajtowe urządzenie kupimy już za 64 USD. Obecnie w USA 1 gigabajt SSD kosztuje około 2 dolarów. Do spadku cen mają przyczynić się taniejące ukłay NAND. Gartner prognozuje, że w bieżącym roku ich ceny spadną o 30%, a przyszłym zmniejszą się o kolejne 36%. Znaczne obniżenie ceny oraz lepsza wydajność i niezawodność spowodują, że SSD staną się poważnymi konkurentami dla HDD.
      Oczywiście 1 dolar za 1 gigabajt to wciąż sporo, warto jednak pamiętać, że zaledwie przed 8 laty takie ceny obowiązywały też na rynku HDD, ale musieliśmy płacić tyle za dyski wyposażone w mniej wydajny interfejs PATA.
    • By KopalniaWiedzy.pl
      Najnowsze linia SSD Intela to duży krok w kierunku upowszechnienia się tego typu napędów. SSD 320 Series mają zastąpić obecnie sprzedawane X25-M.
      W nowej linii dysków zwiększono ich maksymalną pojemność, poprawiono wydajność i zmniejszono cenę.
      Nowe urządzenia korzystajż z 25-nanometrowych kości MLC flash. Intel zastosował w nich nowy kontroler oraz 128-bitowe szyfrowanie AES. Poprawiono korekcję błędów i dodano mechanizm zapewniający, że właśnie zapisywany plik zostanie zapisany do końca mimo wystąpienia awarii zasilania. Te usprawnienia powodują, że Intel ma nawet nadzieję, iż SSD 320 Series będą wykorzystywane w zastosowaniach serwerowych, jako alternatywa dla dysków 15000 rpm.
      Intel nie zdradził ceny detalicznej nowych urządzeń. Wiadomo jednak, że dystrybutorzy będą mogli je kupić w cenie 89 USD (40 GB), 159 USD (80 GB), 209 USD (120 GB), 289 USD (160 GB), 529 USD (300 GB) oraz 1069 USD (600 GB). Dla porównania można wspomnieć, że 160-gigabajtowy X25-M jest sprzedawany w detalu w cenie 410 dolarów. Niewykluczone zatem, że spełni się zapowiedź Intela, że SSD 320 Series 160 GB będzie sprzedawany w cenie o około 100 dolarów niższej niż jego poprzednik.
      Ceny SSD szybko spadają. Jeszcze przed rokiem dysk o pojemności 256 gigabajtów kosztował w detalu około 750 USD.
    • By KopalniaWiedzy.pl
      SSD powoli zdobywają popularność i odbierają rynek HDD. Wciąż są od nich sporo droższe, jednak szybszy transfer danych i większa niezawodność przekonują do tych urządzeń coraz więcej osób. Okazuje się jednak, że SSD mają poważną wadę, która jest szczególnie ważna dla przedsiębiorstw czy agend rządowych. Badania przeprowadzone przez naukowców z Laboratorium Systemów Nieulotnych (Non-Volatile Systems Laboratory - NVSL) z Uniwersytetu Kalifornijskiego w San Diego dowodzą, że z SSD znacznie trudniej jest usunąć dane niż z HDD. Ma to olbrzymie znaczenie, gdy chcemy pozbyć się starego SSD.
      Nasze badania dowodzą, że naiwne zastosowanie w SSD technik przeznaczonych do skutecznego usuwania danych z HDD, takich jak nadpisywanie czy używanie wbudowanych komend bezpiecznego kasowania, jest nieskuteczne i czasem może powodować, iż dane pozostaną nietknięte. Co więcej, niszczenie informacji zawartych w pojedynczym pliku jest znacznie trudniejsze na SSD niż na tradycyjnych dyskach twardych - czytamy w raporcie z badań.
      Podczas jednego z eksperymentów wobec plików zastosowano 14 różnych metod usuwania danych. Wykorzystano m.in. algorytmy amerykańskich sił zbrojnych (US DoD 5220.22-M, US Air Force 5020, US Army AR380-19), rosyjski GOST P50739-19, brytyjski HMG ISS, Schneier 7 Pass i inne. Żaden z nich nie usunął pliku całkowicie, pozostawiając na SSD od 10 do 1000 megabajtów informacji.
      Uczeni z NVSL pracują teraz nad technikami, które umożliwią dokładne kasowanie danych z SSD. Ostrzegają, że dopóki technologie takie nie zostaną opracowane, właściciele SSD powinni zachowywać szczególną ostrożność podczas pozbywania się dysków wykorzystywanych do przechowywania istotnych danych.
×
×
  • Create New...