Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zakwaszenie oceanów upośledza słuch błazenków

Rekomendowane odpowiedzi

Młode amfipriony, zwane także błazenkami, posługują się słuchem, by w ciągu dnia wykryć i ominąć obfitujące w drapieżniki rafy koralowe. Wydaje się jednak, że wzrost zakwaszenia oceanów pogarsza ich słuch, co wystawia ryby na oczywiste niebezpieczeństwo (Biology Letters).

Od rewolucji przemysłowej niemal połowa dwutlenku węgla, uwolnionego w wyniku spalania paliw kopalnych, została pochłonięta przez oceany. Wskutek tego pH wody zaczęło spadać szybciej niż kiedykolwiek wcześniej w ciągu ostatnich 650 tys. lat. Podczas gdy uprzednie badania pokazały, że zjawisko to prowadzi do utraty przez ryby węchu, najnowsze studium ichtiologów z Uniwersytetu w Bristolu oraz Uniwersytetu Jamesa Cooka dodało do tego również upośledzenie słuchu.

Jak wyjaśnia dr Steve Simpson ze Szkoły Nauk Biologicznych Uniwersytetu Bristolskiego, na początku młode amfipriony trzymano w dzisiejszych warunkach, potem wypróbowano 2 kolejne scenariusze z dodatkowymi dawkami CO2; uzwględniono przy tym przewidywania Międzyrządowego Zespołu ds. Zmian Klimatu (IPCC) na 2050 i 2100 rok. Po 17-20 dniach Simpson monitorował reakcje narybku na odgłosy rafy bogatej w drapieżniki, na które składały się m.in. dźwięki wydawane przez skorupiaki oraz inne ryby.

Zaprojektowaliśmy zupełnie nową komorę wyboru, która pozwoliła nam odtwarzać hałasy rafy przez podwodne głośniki i monitorować, jak nasze laboratoryjne ryby reagują. Ryby hodowane w warunkach odpowiadających współczesnym odpływały od źródła dźwięków drapieżnika, ale już osobniki hodowane przy stężeniach CO2 przewidywanych na 2050 i 2100 r. nie wykazywały żadnej reakcji.

Brytyjsko-australijskie studium zademonstrowało, że zakwaszenie oceanów wpływa nie tylko na zewnętrzne systemy czuciowe, ale także na te zlokalizowane głębiej w ciele ryb (uszy są np. ukryte z tyłu głowy). Umieściliśmy dzisiejsze ryby w jutrzejszych warunkach [...]. Nie wiemy, czy w ciągu życia kilku kolejnych pokoleń zwierzęta te zdołają się przystosować i tolerować zakwaszenie oceanów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

no i Nemo w dzisiejszych czasach już by nie usłyszał jak go tata woła...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ponad miliard nastolatków i młodych dorosłych jest potencjalnie zagrożonych utratą słuchu, czytamy na łamach British Medical Journal Global Health. Ryzyko związane jest z częstym używaniem przez nich słuchawek i uczestnictwem w koncertach i innych wydarzeniach związanych ze słuchaniem głośnej muzyki.
      Światowa Organizacja Zdrowia ocenia, że obecnie 430 milionów ludzi na świecie ma uszkodzony słuch. Szczególnie narażeni są użytkownicy osobistych urządzeń nagłaśniających, takich jak słuchawki. Już wcześniej opublikowane badania wykazały, ze użytkownicy takich urządzeń bardzo często ustawiają głośność nawet na 105 decybeli. Do tego należy dodać uczestnictwo w wydarzeniach związanych z puszczaniem głośno muzyki, na których średnia głośność wynosi od 104 do 112 dB. Tymczasem bezpieczny poziom dźwięku wynosi 80 dB dla dorosłych i 75 dB dla dzieci.
      Autorzy najnowszych badań postanowili sprawdzić, jak bardzo rozpowszechnione wśród młodzieży i młodych dorosłych jest słuchanie nadmiernie głośnych dźwięków. Przejrzeli więc badania opublikowane w językach angielskim, francuskim, hiszpańskim i rosyjskim, które dotyczyły osób w wieku 12–34 lat. Poszukiwano tych badań, w których pod uwagę uwagę wzięto rzeczywistą zmierzoną głośność dźwięków oraz czas narażenia na ich oddziaływanie. Pod uwagę wzięto 33 badania. Część z nich uwzględniała pomiary dotyczące użycia urządzeń osobistych, część uczestnictwa w głośnych imprezach, a część zawierała dane o obu rodzajach narażenia na głośne dźwięki. W sumie badaniami objęto 19 046 uczestników i uwzględniono w nich 17 pomiarów dotyczących używania urządzeń oraz 18 pomiarów odnośnie uczestnictwa w głośnych imprezach.
      Z badań wynika, że na zbyt głośne szkodliwe dla słuchu dźwięki naraża się 24% młodzieży i 48% młodych dorosłych. To oznacza, że na utratę słuchu narażonych jest od 670 milionów do 1,35 miliarda osób.
      Oczywiście badania mają swoje ograniczenia. Ich autorzy nie brali pod uwagę np. różnic demograficznych w poszczególnych krajach, czy rozwiązań prawnych wprowadzonych w celu ochrony słuchu. Niemniej jednak pokazują one, jak bardzo poważny jest to problem. Ze szczegółami badań można zapoznać się w artykule Prevalence and global estimates of unsafe listening practices in adolescents and young adults: a systematic review and meta-analysis.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Sprawdzają się przewidywania naukowców, który prognozują, że już w roku 2016 średnia roczna koncentracja CO2 przekroczy 400 części na milion (ppm). W ubiegłym roku, w nocy z 7 na 8 maja, po raz pierwszy zanotowano, że średnia godzinowa koncentracja dwutlenku węgla przekroczyła 400 ppm. Tak dużo CO2 nie było w atmosferze od 800 000 – 15 000 000 lat.
      W bieżącym roku możemy zapomnieć już o średniej godzinowej i znacznie wydłużyć skalę czasową. Czerwiec był trzecim z kolei miesiącem, w którym średnia miesięczna koncentracja była wyższa niż 400 części na milion.
      Granica 400 ppm została wyznaczona symbolicznie. Ma nam jednak uświadomić, jak wiele węgla wprowadziliśmy do atmosfery. Z badań rdzeni lodowych wynika, że w epoce preindustrialnej średnia koncentracja dwutlenku węgla w atmosferze wynosiła 280 części na milion. W roku 1958, gdy Charles Keeling rozpoczynał pomiary na Mauna Loa w powietrzu znajdowało się 316 ppm. Wraz ze wzrostem stężenia CO2 rośnie też średnia temperatura globu. Naukowcy nie są zgodni co do tego, jak bardzo możemy ogrzać planetę bez narażania siebie i środowiska naturalnego na zbytnie niebezpieczeństwo. Zgadzają się zaś co do tego, że już teraz należy podjąć radykalne kroki w celu redukcji emisji gazów cieplarnianych. Paliwa niezawierające węgla muszą szybko stać się naszym podstawowym źródłem energii - mówi Pieter Tans z Narodowej Administracji Oceanicznej i Atmosferycznej.
      Kwiecień 2014 roku był pierwszym, w którym przekroczono średnią 400 ppm dla całego miesiąca. Od maja, w związku z rozpoczęciem się najintensywniejszego okresu fotosyntezy na półkuli północnej, rozpoczął się powolny spadek koncentracji CO2, która w szczytowym momencie osiągnęła 402 ppm. Jednak przez cały maj i czerwiec średnia dzienna, a zatem i średnia miesięczna, nie spadły poniżej 400 części CO2 na milion. Eksperci uważają, że w trzecim tygodniu lipca koncentracja dwutlenku węgla spadnie poniżej 400 ppm. Do ponownego wzrostu dojdzie zimą i wzrost ten utrzyma się do maja.
      Rośliny nie są jednak w stanie pochłonąć całego antropogenicznego dwutlenku węgla i wraz z każdym sezonem pozostawiają go w atmosferze coraz więcej. Dlatego też Pieter Tans przypuszcza, że w przyszłym roku pierwszym miesiącem, dla którego średnia koncentracja tego gazu przekroczy 400 ppm będzie już luty, a tak wysoki poziom CO2 utrzyma się do końca lipca, czyli przez sześć pełnych miesięcy. Od roku 2016 poziom 400 ppm będzie stale przekroczony.
      Dopóki ludzie będą emitowali CO2 ze spalanego paliwa, dopóty poziom tego gazu w oceanach i atmosferze będzie się zwiększał - mówi Tans.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Obecny w atmosferze dwutlenek węgla napędza wzrost roślin. Wiele osób żywi przekonanie, że im więcej węgla w atmosferze, tym bujniejszy wzrost roślinności, a im więcej roślinności, tym więcej węgla z atmosfery one wchłaniają. Wyniki badań, które opublikowano właśnie na łamach Nature wskazują, że gdy więcej CO2 w atmosferze powoduje bardziej bujny wzrost roślin ma to... negatywny wpływ na zdolność gleby do przechowywania węgla.
      Jedno z możliwych wyjaśnień tego fenomenu brzmi: bujniejsza roślinność wykorzystuje więcej składników zawartych w glebie. A to z kolei przyczynia się do zwiększonej aktywności mikroorganizmów, w wyniku której z gleby uwalniany jest dwutlenek węgla, który bez tej dodatkowej aktywności zostałby w niej uwięziony.
      Wyniki badań przeczą powszechnemu przekonaniu, że im więcej biomasy rośnie, tym więcej jej się rozkłada, a zawarty w niej węgiel zostaje uwięziony w glebie. Autorzy najnowszych badań przeanalizowali dane ze 108 przeprowadzonych wcześniej eksperymentów, podczas których sprawdzano poziom węgla w glebie, tempo wzrostu roślin oraz wpływ wysokiego stężenia CO2 na oba te czynniki. Ze zdumieniem zauważyli istnienie mechanizmu, który przeczy intuicji. Gdy zwiększa się masa roślin, zwykle zmniejsza się ilość węgla w glebie, mówi główny autor badań, Cesar Terrer z Uniwersytetu Stanforda.
      Okazało się, że jednoczesny wzrost masy roślinnej oraz koncentracja węgla w glebie są bardzo trudne do osiągnięcia, mówi jeden z autorów badań, profesor Rob Jackson.
      Uczony dodaje, że obecnie stosowane modele klimatyczne nie biorą pod uwagę tego zjawiska, wskutek czego prawdopodobnie przeszacowują one zdolność gleby do przechowywania węgla pobranego z atmosfery.
      Szacuje się, że rośliny i gleba absorbują obecnie około 30% CO2 emitowanego przez człowieka. Oszacowanie, jak wiele węgla może zostać uwięzione w glebie jest niezwykle ważne, gdyż węgiel ten powinien pozostawać przez długi czas. Gdy roślina ulega rozkładowi, część uwięzionego w niej węgla powraca do atmosfery. Jednak gdy węgiel zostaje uwięziony w glebie, pozostaje tam przez setki lub tysiące lat, wyjaśnia Terrer.
      Nowa praca bazuje na opracowaniu autorstwa Terrera, Jacksona i innych, którzy w 2019 roku oszacowali, że dwukrotne – w porównaniu z epoką przedprzemysłową – zwiększenie koncentracji atmosferycznego CO2 doprowadzi do zwiększenia biomasy o około 12%, zatem rośliny prawdopodobnie odegrają znacznie mniejszą niż przewidywano rolę w wycofywaniu węgla z atmosfery.
      Teraz, po sprawdzeniu jednoczesnej zdolności roślin i gleby do pobierania węgla z atmosfery, uczeni doszli do wniosku, że należy zrewidować i ten mechanizm. W glebie uwięzione jest więcej węgla niż w roślinach. Dlatego też musimy się jej lepiej przyjrzeć, gdy zastanawiamy się nad przewidywanymi zmianami szaty roślinnej, stwierdza Jackson. Z badań wynika, że niespodziewanie dużo węgla mogą w przyszłości absorbować użytki zielone, jak łąki czy pastwiska. W scenariuszu, w którym CO2 jest dwukrotnie wyższe niż przed rewolucją przemysłową, zdolność użytków zielonych do przechowywania węgla rośnie o 8%. Tymczasem zdolność lasów pozostaje na tym samym poziomie co obecnie. Stanie się tak pomimo tego, iż biomasa lasów ma w tym czasie wzrosnąć o 23%, a biomasa użytków zielonych o 9%. Dzieje się tak częściowo dlatego, że drzewa wiążą w glebie stosunkowo mało pochłanianego przez siebie węgla.
      Z punktu widzenia bioróżnorodności sadzenie lasów na obszarach zajętych przez naturalne użytki zielone czy sawanny to błąd. Nasze badania pokazują, że ekosystemy użytków zielonych są bardzo ważne z punktu widzenia pochłaniania węgla, mówi Terrer.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wyjście zwierząt z wody na ląd to jedno z najważniejszych wydarzeń w ewolucji. Kluczem do zrozumienia, jak do tego doszło, jest odkrycie, kiedy i jak wyewoluowały płuca i kończyny. Wykazaliśmy, że biologiczne podstawy do ich ewolucji istniały na długo przed tym, zanim pierwsze zwierzę wyszło na brzeg, mówi profesor Guojie Zhang z Uniwersytetu w Kopenhadze.
      Nie od dzisiaj wiemy, że człowiek oraz inne kręgowce wyewoluowały z ryb. Przed około 370 milionami lat na ląd zaczęły wychodzić pierwsze prymitywne czworonogi, ryby, które zmieniły płetwy na kończyny i były w stanie oddychać powietrzem atmosferycznym. Okazuje się jednak, że zmiana płetw na kończyny i umiejętność oddychania poza wodą są znacznie starsze.
      Naukowcy z Uniwersytetu w Kopenhadze przeprowadzili badania genetyczne, które dowiodły, że już 50 milionów przed wyjściem czworonogów na ląd istniał kod genetyczny umożliwiający zmianę płetw na łapy i pozwalający na oddychanie powietrzem atmosferycznym. Co więcej, geny te wciąż istnieją u ludzi i wielopłetwcowatych. Badania, opublikowane na łamach pisma Cell, zmieniają tradycyjne spojrzenie na ciąg wydarzeń, które doprowadziły do pojawienia się pierwszych zwierząt lądowych.
      Uczeni od pewnego czasu podejrzewają, że płetwy piersiowe wielopłetwcowatych, ryb potrafiących poruszać się po lądzie podobnie jak czworonogi, odpowiadają płetwom, jakie posiadał nasz wspólny przodek z rybami. Teraz, dzięki mapowaniu genomu wykonanemu przez uczonych z Kopenhagi, dowiadujemy się, że staw łączący metapterygium z radialiami płetw jest homologiem – czyli ma wspólne pochodzenie ewolucyjne – stawu łokciowego u człowieka. Sekwencja DNA kontrolująca rozwój stawu łokciowego H. sapiens istniała już u wspólnego przodka prymitywnych ryb i kręgowców lądowych i wciąż u nich istnieje. Jednak w pewnym momencie ewolucji sekwencję tę utraciły ryby z podgromady doskonałokształtnych.
      Wielopłetwcowate i niektóre inne prymitywne ryby posiadają parę płuc przypominających ludzkie płuca. Właśnie przeprowadzone badania wykazały, że ich płuca funkcjonują podobnie jak płuca niszczuki krokodylej i dochodzi u nich do ekspresji tych samych genów co w ludzkich płucach.
      Jednocześnie wykazano, że w tkance płuc i pęcherza pławnego mamy do czynienia z bardzo podobną ekspresją genów, co wskazuje, że są organami homologicznymi. Tak zresztą uważał już Darwin. Jednak o ile Darwin sądził, że pęcherz pławny przekształcił się w płuca, to obecne badania sugerują, że wyewoluował on z płuc. Ich autorzy sądzą, że nasi wcześni rybi przodkowie posiadali prymitywne płuca. W toku ewolucji część ryb zachowała te płuca, co pozwoliło im z czasem wyjść na ląd i przyczyniło się do pojawienia się czworonogów, a u części ryb z płuc powstał pęcherz pławny, prowadząc do powstania doskonałokształtnych.
      Badania te pokazują, skąd wzięły się różne organy naszego ciała i ich funkcję są zapisane w kodzie genetycznym. Niektóre z funkcji związanych z płucami i kończynami nie pojawiły się w czasie, gdy pierwsze zwierzęta wyszły na ląd, ale były zakodowane w genomie na długo zanim pierwsza ryba zaczęła prowadzić lądowy tryb życia. Co ciekawe, te sekwencje genetyczne są wciąż obecne w rybich „żywych skamielinach”, dzięki czemu możemy je badać, mówi Guojie Zhang.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W głębinach oceanu pozbawionych światła słonecznego zespół naukowców odkrył jeden z najczarniejszych znanych materiałów: skórę pewnych ryb. Te ultraczarne ryby pochłaniają światło tak skutecznie, że nawet w jaskrawym świetle wyglądają jak kontury bez rozróżnialnych cech. W ciemnościach głębin, także otoczone bioluminescencyjnym światłem, ryby te dosłownie znikają.
      Szesnastego lipca w piśmie Current Biology ukazał się artykuł zespołu Karen Osborn z Narodowego Muzeum Historii Naturalnej (Smithsonian Institution) i Sönke Johnsena z Duke University. Naukowcy podkreślają, że ultraczarna skóra wyewoluowała u 16 gatunków głębokowodnych ryb. Dane histologiczne sugerują, że niski współczynnik odbicia jest pośredniczony przez ciągłą warstwę gęsto upakowanych melanosomów tuż pod błoną podstawną naskórka. W warstwie tej brakuje niezabarwionych przerw między melonoforami, które występują u innych ryb o ciemnym ubarwieniu.
      Jak podkreślają naukowcy, przekłada się to na wysoką absorpcję. Odbija się zaledwie 0,5% światła. Naśladowanie tej strategii pozwoliłoby inżynierom opracować tańsze, giętkie i bardziej wytrzymałe ultraczarne materiały do zastosowań w technologiach optycznych, np. teleskopach, czy do kamuflażu.
      Osborn zainteresowała się rybią skórą, po tym jak spróbowała sfotografować uderzająco czarne, złowione włókiem dennym ryby. Mimo nowoczesnego sprzętu nie mogła uwiecznić  żadnych szczegółów. Nie miało znaczenia, jak się ustawiło aparat czy oświetlenie - pochłaniane było całe światło.
      Pomiary w laboratorium pokazały, czemu aparaty sobie nie radziły. Wiele z ryb pochłaniało ponad 99,5% światła, które padało na ich powierzchnię. W głębokim, ciemnym oceanie, gdzie pojedynczy foton wystarczy, by przyciągnąć czyjąś uwagę, taka intensywna czerń zwiększa szansę ryb na przeżycie.
      Ponieważ światło słoneczne nie dociera na większe głębokości, gros istot z głębin produkuje własne światło (zjawisko to nazywamy bioluminescencją). Można w ten sposób zwrócić uwagę płci przeciwnej, rozproszyć drapieżniki czy zwabić ofiarę. Można też zdemaskować zwierzęta znajdujące się nieopodal, chyba że mają one dobry kamuflaż. Jeśli chcesz się wtopić w nieskończoną czerń otoczenia, pochłonięcie wszystkich docierających do ciebie fotonów wydaje się wspaniałą metodą - podkreśla Osborn.
      Naukowcy zauważyli, że kształt, rozmiar i układ melonosomów powodują, że praktycznie całe światło, jakiego same bezpośrednio nie absorbują, jest jest kierowane do sąsiednich melanosomów (wydłuża się ścieżka optyczna, a więc i pochłanianie promieniowania przez melaninę). Niski współczynnik odbicia to pokłosie rozpraszania światła na boki w obrębie warstwy. W gruncie rzeczy tworzą one superwydajną, supercienką pułapkę świetlną. Światło się nie odbija, nie przechodzi na drugą stronę. Wchodzi w tę warstwę i przepada.
      Jak wyliczono, spośród 18 uwzględnionych w badaniach gatunków przy fali długości 480 nm (to wartość typowa m.in. dla oceanicznej bioluminescencji) 16 prezentowało współczynniki odbicia poniżej 0,5%, a 2 pozostałe gatunki (Chauliodus macouni i Cyclothone acclinidens) poniżej 0,6%.
      Z wyjątkiem C. acclinidens, Ch. macouni i Sigmops elongatus, ultraczarna skóra pokrywała większość ciała, co sugeruje, że ma ona zmniejszać odbicie światła z bioluminescencji. Generalnie badane ryby były średnich rozmiarów, dlatego presja, by ukryć się zarówno przed drapieżnikami, jak i ofiarami, mogła być ważną siłą napędzającą ewolucję ultarczarnej skóry.
      Naukowcy podejrzewają też, że ultraciemna skóra u drapieżników polujących z zasadzki, np. Oneirodes sp., Eustomias spp. i Astronesthes micropogon, służy do zmniejszenia współczynnika odbicia własnych wabików. Niekiedy ultraczarna skóra znajdowała się tylko w okolicy przewodu pokarmowego, co miałoby służyć ukryciu światła emitowanego przez niedawno spożytą bioluminescencyjną ofiarę. U np. Ch. macouni ultraczarna skóra występowała nad i pod lustrzanym pasem, co sugeruje, że dla rejonów ciała o wysokiej krzywiźnie kamuflaż lustrzany może być mniej skuteczny, dlatego zastąpiono go ultraczernią.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...