Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wstrzykiwalny implant przy uszkodzeniach krążków międzykręgowych

Rekomendowane odpowiedzi

Brytyjscy badacze zaproponowali rozwiązanie, które przyniesie wielką ulgę osobom cierpiącym na chroniczne bóle pleców. Ponieważ często są one spowodowane degeneracją krążków międzykręgowych, będzie można zastosować wstrzykiwalny implant z biomateriału.

Naukowcy z Uniwersytetu w Manchesterze opublikowali w piśmie Soft Matter artykuł na temat dziejów swojego wynalazku. Ma on naprawdę duże znaczenie, gdyż po bólach głowy przewlekłe bóle pleców są najczęstszą dolegliwością neurologiczną. Szacuje się, że w którymś momencie życia doświadcza ich aż 80% ludzi.

Brytyjczycy utworzyli międzywydziałowy zespół, który od lat pracował nad zwiększającymi objętość nanoskopowymi cząstkami polimeru. Wcześniej zademonstrowano, że utworzona z takich cząstek wstrzykiwalna ciecz może się przekształcić w żel, odnawiający funkcje mechaniczne uszkodzonego modelu krążków międzykręgowych. Ostatnio ekipa pracująca pod kierownictwem doktora Briana Saundersa poczyniła znaczne postępy, doprowadzając do połączenia cząstek mikrożelu i uformowania nadającego się do wstrzyknięcia wytrzymałego i elastycznego żelu. Może on wytrzymać duże zmiany kształtu, nie ulegając przy tym zniszczeniu. Ulepszone żele mają o wiele lepsze właściwości mechaniczne od pierwszej generacji wynalazku.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z University of Massachusetts Amhers odkryli, w jaki sposób spowodować, by przedmioty poruszały się, korzystając wyłącznie z przepływu energii w otoczeniu. Ich badania mogą przydać się w licznych zastosowaniach – od produkcji zabawek po przemysł wojskowy. Wszędzie tam, gdzie potrzebne jest zapewnienie źródła napędu. Ponadto pozwolą nam w przyszłości więcej dowiedzieć się o tym, jak natura napędza niektóre rodzaje ruchu.
      Profesor Al Crosby, student Yongjin Kim oraz Jay Van den Berg z Uniwersytetu Technologicznego w Delft (Holandia) prowadzili bardzo nudny eksperyment. Jego częścią było obserwowanie, jak wysycha kawałek żelu. Naukowcy zauważyli, że gdy długi pasek żelu schnie, tracąc wilgoć wskutek parowania, zaczyna się poruszać. Większość tych ruchów była powolna, jednak od czasu do czasu żel przyspieszał. Te przyspieszenia miały związek z nierównomiernym wysychaniem. Dodatkowe badania ujawniły, że znaczenie ma tutaj kształt i że żelowe paski mogą „zresetować się”, by kontynuować ruch.
      Wiele zwierząt i roślin, szczególnie tych małych, korzysta ze specjalnych elementów działających jak sprężyny i zatrzaski, co pozwala im bardzo szybko się poruszać, znacznie szybciej niż zwierzęta korzystające wyłącznie z mięśni. Dobrym przykładem takiego ruchu są takie rośliny jak muchołówki, a w świecie zwierzęcym są to koniki polne i mrówki z rodzaju Odontomachus. Niestabilność to jedna z metod, którą natura wykorzystuje do stworzenia mechanizmu sprężyny i zatrzasku. Coraz częściej wykorzystuje się taki mechanizm by umożliwić szybki ruch małym robotom i innym urządzeniom. Jednak większość z tych mechanizmów potrzebuje silnika lub pomocy ludzkich rąk, by móc kontynuować ruch. Nasze odkrycie pozwala na stworzenie mechanizmów, które nie będą potrzebowały źródła zasilania czy silnika, mówi Crosby.
      Naukowcy wyjaśniają, że po zaobserwowaniu poruszających się pasków i zbadaniu podstaw fizyki wysychania żelu, rozpoczęli eksperymenty w celu określenia takich kształtów, które z największym prawdopodobieństwem spowodują, że przedmiot będzie reagował tak, jak się spodziewamy i że będzie poruszał się bez pomocy silnika czy ludzkich dłoni przeprowadzających jakiś rodzaj resetu.
      To pokazuje, że różne materiały mogą generować ruch wyłącznie dzięki interakcji z otoczeniem, np. poprzez parowanie. Materiały te mogą być przydatne w tworzeniu nowych robotów, szczególnie małych, w których trudno jest zmieścić silniki, akumulatory czy inne źródła energii, stwierdza profesor Crosby.
      Ta praca to część większego multidyscyplinarnego projektu, w ramach którego próbujemy zrozumieć naturalne i sztuczne systemy, pozwalające na stworzenie w przyszłości skalowalnych metod generowania energii na potrzeby ruchu mechanicznego. Szukamy też materiałów i struktur do przechowywania energii. Odkrycie może znaleźć wiele różnych zastosowań w Armii i Departamencie Obrony, mówi doktor Ralph Anthenien, jeden z dyrektorów Army Research Office. Badania Crosby'ego są finansowane przez U.S. Army Combat Capabilities Development Command.
      Więcej na ten temat przeczytamy w artykule Autonomous snapping and jumping polymer gels.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowotwory to jedna z głównych przyczyn zgonów w krajach uprzemysłowionych. Wiele z nich potrafimy leczyć lub kontrolować, ale mimo to wciąż umiera na nie duża liczba ludzi. Przyczyną jest zbyt późna diagnoza. Opracowanie metody wczesnego wykrywania rozwijającego się nowotworu pozwoliłoby nie tylko uratować życie wielu ludziom, ale znacząco obniżyłoby koszty terapii.
      Potencjalną metodę ostrzegania o początkach nowotworu opracował profesor Martin Fusseneger ze Szwajcarskiego Instytutu Technologicznego w Zurichu i współpracujący z nim naukowcy. Wykorzystuje ona sieć syntetycznych genów rozpoznających bardzo wczesne etapy rozwoju nowotworów prostaty, płuc, piersi i jelita grubego. Na tych wczesnych etapach dochodzi do zwiększenia poziomu wapnia we krwi i właśnie ten podniesiony poziom wykrywa system Fussenegera.
      Wspomniana sieć genów jest umieszczana w implancie, który wstrzykiwany jest pod skórę, gdzie bez przerwy monitoruje poziom wapnia we krwi. Gdy poziom ten zostaje przez dłuższy czas przekroczony, uruchamiana jest cała kaskada sygnałów, które powodują, że we wstrzykniętej w określone miejsce na skórze zmodyfikowanej genetycznie grupie komórek dochodzi do produkcji melaniny. Na skórze pojawia się widoczne gołym okiem zaciemnione miejsce, które jest sygnałem ostrzegawczym o rozwijającym się nowotworze. Co istotne, sygnał ten pojawia się na długo zanim jeszcze nowotwór można wykryć za pomocą standardowych metod diagnostycznych. Posiadacz implantu powinien wówczas udać się do lekarza w celu specjalistycznej diagnostyki, mówi Fussenegger.
      Naukowcy wykorzystali jako wskaźnik poziom wapnia, gdyż jest on ściśle kontrolowany przez organizm. Kości służą jako bufor regulujący poziom wapnia we krwi. Zbyt duża ilość tego pierwiastka może być sygnałem o rozwoju jednego z czterech wspomnianych typów nowotworów. Wczesna diagnostyka to klucz do sukcesu. Na przykład w przypadku raka piersi szanse na wyleczenie przy wczesnej diagnozie wynoszą aż 98%, podczas gdy przy późnej diagnozie spadają do 25%. Obecnie ludzie trafią do lekarza przeważnie wówczas, gdy guz daje jakieś objawy. Niestety, często jest wówczas zbyt późno, stwierdza Fussenegger.
      Nawiększym ograniczeniem nowej metody jest krótki czas życia implantu. Jak mówi Fussenegger, z literatury specjalistycznej wynika, że po zamknięciu w odpowiednich kapsułach żywe komórki mogą przetrwać około roku. Po tym czasie implant trzeba będzie zapewne wymieniać.
      Na razie naukowcy dysponują wczesnym prototypem implantu. Był on z powodzeniem testowany na myszach i świniach. Profesor Fusseneger mówi, że opracowanie w pełni rozwiniętej wersji dla ludzi oraz proces jej testowania i dopuszczania do użytku potrwają co najmniej 10 lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.
      Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.
      Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.
      Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.
      Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.
      Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.
      Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.
      Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.
      Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
    • przez KopalniaWiedzy.pl
      Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.
      Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.
      Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.
      Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.
      Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.
      !RCOL
      Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.
      Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.
      Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.
      Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
       
    • przez KopalniaWiedzy.pl
      Ku zaskoczeniu amerykańskich naukowców okazało się, że nawilżaczem w implantach stawów biodrowych typu metal-metal jest grafit, nie białka. Wiedza ta pozwoli zaprojektować lepsze materiały do implantów, które będą mniej podatne na zużycie.
      Zespół złożony ze specjalistów z Northwestern University, Centrum Medycznego Rush University oraz Universität Duisburg-Essen odkrył, że kluczowym składnikiem lubrykantu z powierzchni implantu typu metal-metal jest grafit. Nawilżacz jest zatem bardziej podobny do występującego w silniku spalinowym niż w naturalnym stawie.
      Materiały protetyczne stawów biodrowych (metale, polimery i ceramika) wytrzymują przeważnie powyżej 10 lat. Po upływie dekady mamy jednak do czynienia ze zwiększoną częstotliwością uszkodzeń, zwłaszcza u młodych, aktywnych osób. Nic dziwnego więc, że marzeniem ortopedów jest wydłużenie żywotności implantów stawów biodrowych do 30-50 lat. Najlepiej zaś, by służyły pacjentowi do końca życia. Teraz, gdy zaczynamy rozumieć, jak przebiega nawilżanie tych implantów w organizmie, mamy punkt zaczepienia, żeby je ulepszyć - podkreśla prof. Laurence D. Marks.
      Wcześniejsze badania 2 członków ekipy, Alfonsa Fischera z Universität Duisburg-Essen i Markusa Wimmera z Centrum Medycznego Rush University, wykazały, że nawilżająca warstwa tworzy się na metalowych stawach w wyniku tarcia (następuje tzw. zużycie trybologiczne). Kiedy już powstanie, zmniejsza tarcie, a także ogranicza zużycie i korozję. Autorzy opracowania opublikowanego w Science porównują film graniczny protezy do cienkiej warstewki wody pozwalającej łyżwiarzowi ślizgać się po lodzie.
      Naukowcy wiedzieli więc już o istnieniu warstwy smarującej, która występuje zarówno na powierzchni głowy, jak i panewki, dotąd nie mieli jednak pojęcia, z czego jest ona zbudowana. Zakładano, że to białka albo inna substancja występująca w organizmie.
      Zespół złożony ze specjalistów z wielu dziedzin badał 7 implantów, pobranych od pacjentów z różnych względów. Akademicy posłużyli się m.in. mikroskopami optycznymi i elektronowymi. Spektra utraty energii elektronów wskazały na grafit. Bazując na tym i na innych dowodach, naukowcy doszli do wniosku, że warstwa nawilżająca składa się głównie z grafitu.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...