Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Roboty przyszości nie będą potrzebowały silników i źródeł zasilania?

Recommended Posts

Naukowcy z University of Massachusetts Amhers odkryli, w jaki sposób spowodować, by przedmioty poruszały się, korzystając wyłącznie z przepływu energii w otoczeniu. Ich badania mogą przydać się w licznych zastosowaniach – od produkcji zabawek po przemysł wojskowy. Wszędzie tam, gdzie potrzebne jest zapewnienie źródła napędu. Ponadto pozwolą nam w przyszłości więcej dowiedzieć się o tym, jak natura napędza niektóre rodzaje ruchu.

Profesor Al Crosby, student Yongjin Kim oraz Jay Van den Berg z Uniwersytetu Technologicznego w Delft (Holandia) prowadzili bardzo nudny eksperyment. Jego częścią było obserwowanie, jak wysycha kawałek żelu. Naukowcy zauważyli, że gdy długi pasek żelu schnie, tracąc wilgoć wskutek parowania, zaczyna się poruszać. Większość tych ruchów była powolna, jednak od czasu do czasu żel przyspieszał. Te przyspieszenia miały związek z nierównomiernym wysychaniem. Dodatkowe badania ujawniły, że znaczenie ma tutaj kształt i że żelowe paski mogą „zresetować się”, by kontynuować ruch.

Wiele zwierząt i roślin, szczególnie tych małych, korzysta ze specjalnych elementów działających jak sprężyny i zatrzaski, co pozwala im bardzo szybko się poruszać, znacznie szybciej niż zwierzęta korzystające wyłącznie z mięśni. Dobrym przykładem takiego ruchu są takie rośliny jak muchołówki, a w świecie zwierzęcym są to koniki polne i mrówki z rodzaju Odontomachus. Niestabilność to jedna z metod, którą natura wykorzystuje do stworzenia mechanizmu sprężyny i zatrzasku. Coraz częściej wykorzystuje się taki mechanizm by umożliwić szybki ruch małym robotom i innym urządzeniom. Jednak większość z tych mechanizmów potrzebuje silnika lub pomocy ludzkich rąk, by móc kontynuować ruch. Nasze odkrycie pozwala na stworzenie mechanizmów, które nie będą potrzebowały źródła zasilania czy silnika, mówi Crosby.

Naukowcy wyjaśniają, że po zaobserwowaniu poruszających się pasków i zbadaniu podstaw fizyki wysychania żelu, rozpoczęli eksperymenty w celu określenia takich kształtów, które z największym prawdopodobieństwem spowodują, że przedmiot będzie reagował tak, jak się spodziewamy i że będzie poruszał się bez pomocy silnika czy ludzkich dłoni przeprowadzających jakiś rodzaj resetu.

To pokazuje, że różne materiały mogą generować ruch wyłącznie dzięki interakcji z otoczeniem, np. poprzez parowanie. Materiały te mogą być przydatne w tworzeniu nowych robotów, szczególnie małych, w których trudno jest zmieścić silniki, akumulatory czy inne źródła energii, stwierdza profesor Crosby.

Ta praca to część większego multidyscyplinarnego projektu, w ramach którego próbujemy zrozumieć naturalne i sztuczne systemy, pozwalające na stworzenie w przyszłości skalowalnych metod generowania energii na potrzeby ruchu mechanicznego. Szukamy też materiałów i struktur do przechowywania energii. Odkrycie może znaleźć wiele różnych zastosowań w Armii i Departamencie Obrony, mówi doktor Ralph Anthenien, jeden z dyrektorów Army Research Office. Badania Crosby'ego są finansowane przez U.S. Army Combat Capabilities Development Command.

Więcej na ten temat przeczytamy w artykule Autonomous snapping and jumping polymer gels.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Trudno mi sobie wyobrazić aby w przyszłości, nawet dalekiej, robot skonstruowany w ten sposób potrafił przebyć przynajmniej 5-krotną swoją długość w jakimkolwiek racjonalnym czasie. Ale może się mylę.

Share this post


Link to post
Share on other sites
Godzinę temu, Ergo Sum napisał:

Trudno mi sobie wyobrazić aby w przyszłości, nawet dalekiej, robot skonstruowany w ten sposób potrafił przebyć przynajmniej 5-krotną swoją długość w jakimkolwiek racjonalnym czasie. Ale może się mylę.

Kliknij w dodatkowy obrazek w tekście, a przekonasz się, że już teraz to możliwe.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zespół europejskich, w tym polskich, fizyków poinformował o ustanowieniu rekordu energetycznego z syntezy termojądrowej. Specjaliści pracujący przy tokamaku Joint European Torus (JET) w Wielkiej Brytanii uzyskali 59 megadżuli trwałej energii z fuzji jądrowej. Wyniki są zgodne z oczekiwaniami, potwierdzają słuszność decyzji o budowie reaktora ITER i dowodzą, że fuzja może być wydajnym, bezpiecznym i niskoemisyjnym źródłem energii.
      Osiągnięcie to jest wynikiem wieloletnich przygotowań zespołu naukowców EUROfusion z całej Europy. Sam rekord, a co ważniejsze, to czego nauczyliśmy się o fuzji w tych warunkach i jak to całkowicie potwierdza nasze przewidywania, pokazuje, że obraliśmy właściwą drogę, by ziścił się świat funkcjonujący w oparciu o energię z syntezy jądrowej. Jeśli jesteśmy w stanie kontrolować fuzję przez pięć sekund, możemy to robić przez pięć minut, a następnie przez pięć dni, w miarę zwiększania skali funkcjonowania urządzeń w przyszłości, powiedział Tony Donné, menedżer programu EUROfusion, w którego pracach udział bierze 4800 ekspertów i studentów z całego świata. A Bernard Bigot, dyrektor ITER, dodał, że stabilne wyładowanie deuteru z trytem na tym poziomie energetycznym, prawie na skalę przemysłową, potwierdza sens działania wszystkich zaangażowanych w fuzję na świecie. W przypadku projektu ITER wyniki JET pozwalają nam zakładać, że jesteśmy na dobrej drodze do zademonstrowania mocy syntezy jądrowej.
      JET znajduje się w Culham w Wielkiej Brytanii. Został uruchomiony w 1977 roku jako przedsięwzięcie Wspólnoty Europejskiej. Prowadzone w nim badania są niezbędne do rozwoju ITER i innych elektrowni termojądrowych. JET to jedyny tokamak na świecie, w którym można zastosować taką samą mieszankę deutery i trytu (D-T), jaka będzie stosowana w ITER i elektrowniach przyszłości. Temperatura osiągana w JET jest 10-krotnie wyższa niż wewnątrz Słońca. Teraz udało się tam uzyskać również olbrzymią ilość energii. Podczas 5-sekundowego wyładowania plazmy uwolniło się 59 megadżuli energii w postaci ciepła. Tym samym JET utrzymał moc wyjściową nieco ponad 11 MW ciepła uśrednioną w ciągu pięciu sekund. Poprzedni rekord, 22 megadżule energii całkowitej, oznaczał 4,4 MW uśrednione w ciągu pięciu sekund.
      Reaktory fuzyjne wytwarzają energię metodą fuzji jądrowej, w czasie której lżejsze pierwiastki łączą się w cięższe. Taki proces zachodzi na Słońcu. Fuzja to pod wieloma względami najdoskonalsze źródło czystej energii. Ilość energii, jaką może dostarczyć zupełnie zmieni reguły gry. Paliwo do fuzji jądrowej można uzyskać z wody, a Ziemia jest pełna wody. To niemal niewyczerpane źródło energii. Musimy tylko dowiedzieć się, jak go używać, mówiła w ubiegłym roku profesor Maria Zuber, wiceprezydent MIT ds. badawczych.
      Badania nad fuzją jądrową prowadzone są na całym świecie i przywiązuje się do nich coraz większą wagę. W bieżącym roku w Wielkiej Brytanii zostanie wybrana lokalizacja dla przyszłej prototypowej elektrowni fuzyjnej, Chińczycy poinformowali o pobiciu rekordu utrzymania wysokotemperaturowej plazmy w tokamaku, prestiżowy MIT twierdzi, że już za 4 lata może powstać pierwszy reaktor fuzyjny z zyskiem energetycznym netto, a z niedawno opublikowanego raportu dowiadujemy się, że na świecie istnieje co najmniej 35 przedsiębiorstw pracujących nad fuzją jądrową. Mimo tego perspektywa powstania pierwsze komercyjnej elektrowni fuzyjnej wydaje się bardzo odległa. To raczej perspektywa dekad niż lat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele ludzkich działań niesie ze sobą zewnętrzne koszty społeczne, środowiskowe czy zdrowotne. Gdy np. jedziemy samochodem, musimy zapłacić za paliwo, jednak cena paliwa nie uwzględnia kosztu zanieczyszczenia środowiska czy negatywnego wpływu spalin na ludzkie zdrowie. Naukowcy z brytyjskiego University of Sussex i koreańskiego Hanyang University podjęli się globalnego oszacowania kosztów zewnętrznych związanych z działalnością sektora transportowego i energetycznego. Okazało się, że koszty te wynoszą ponad 1/4 światowego produktu brutto.
      Z analizy przeprowadzonej przez profesorów Benjamina K. Sovacoola i Jinsoo Kima, wynika, że zewnętrzne koszty społeczne, zdrowotne i środowiskowe obu wspomnianych sektorów to 24,662 biliony USD, czyli około 29% światowego produktu brutto.
      Badania opublikowane na łamach pisma Energy Research & Social Science wykazały, że gdyby uwzględnić wszystkie koszty powodowane przez wykorzystywanie węgla – takie jak zmiana klimatu, zanieczyszczenie powietrza czy degradacja gleb – to cena węgla powinna być ponaddwukrotnie wyższa, niż jest obecnie.
      Autorzy badań podkreślają, że obecny system energetyczny nie sprawdza się pod względem rynkowym. Gdyby bowiem uwzględnić rzeczywiste koszty produkcji energii, to okazałoby się, że nieuwzględniane koszty są niemal równe obecnym kosztom produkcji, przez co wiele elektrowni węglowych i atomowych byłoby nieopłacalnych. Naukowcy przypominają przy tym, że również systemy produkcji energii odnawialnej niosą ze sobą koszty zewnętrzne.
      Podczas badań zidentyfikowaliśmy olbrzymie koszty zewnętrzne, które niemal nigdy nie są uwzględniane w rzeczywistych wydatkach związanych z jazdą samochodem czy użytkowaniem elektrowni węglowej. Uwzględnienie tych kosztów doprowadziłoby do radykalnej zmiany szacunków ekonomicznych i portfolio zasobów, na których polegają dostawcy energii, mówi profesor Sovacool.
      To nie jest tak, że społeczeństwo nie płaci tych kosztów. Po prostu koszty te nie są uwzględniane w cenie energii. I, niestety, te koszty zewnętrzne nie są ponoszone ani równo, ani uczciwie. Najbardziej poszkodowani są ci najsłabiej reprezentowani na rynku. To na przykład ludzie żyjący na obszarach o najbardziej zanieczyszczonym powietrzu, glebie i wodzie, których nie stać na przeprowadzkę w inne regiony czy mieszkańcy wysp ledwie wystających nad poziom morza, jak Vanuatu czy Malediwy, którzy już teraz są zagrożeni przez wzrost poziomu wód oceanicznych.
      Profesor Jinsoo Kim dodaje, że badania jasno pokazują, iż ropa naftowa, węgiel i związane z nimi odpady generują znacznie więcej kosztów w portfolio firm energetycznych niż inne metody produkcji energii. Gdyby prawdziwe koszty wykorzystywania paliw kopalnych były uwzględniane, to wielkie ponadnarodowe koncerny energetyczne, które dominują na światowym rynku, przynosiłyby olbrzymie straty. Jednak zamiast tego rachunek wystawiany jest społeczeństwom, które ponoszą te koszty.
      Na potrzeby swoich badań uczeni wykonali metaanalizę i syntezę 139 badań naukowych, w których dokonano w sumie 704 szacunków kosztów zewnętrznych. Były to 83 badania dotyczące dostarczania energii, 13 badań nad efektywnością energetyczną i 43 badania nad transportem.
      Z przeprowadzonej analizy wynika, że największe koszty zewnętrzne niesie ze sobą produkcja energii z węgla. Wynoszą one aż 14,5 centa na kWh, podczas gdy średni koszt produkcji energii z węgla w czasie całego okres działania elektrowni węglowej wynosi od 6,6 do 15,2 centa/kWh. Drugim pod względem wysokości kosztów zewnętrznych rodzajem pozyskiwania energii jest jej produkcja z gazu ziemnego. Tam koszty zewnętrzne to 3,5 centa/kWh, przy koszcie produkcji wynoszącym 4,4–6,8 centa/kWh.
      To poważne wyzwanie dla polityków, urzędników i planistów, by spowodować, żeby rynki transportowy i energetyczny funkcjonowały ja należy i uwzględniały w cenach swoich produktów biliony dolarów kosztów zewnętrznych, które obecnie przerzucają na społeczeństwo. Obecnie konsumenci są odseparowani od rzeczywistych kosztów pozyskiwania, transportu i przetwarzania surowców energetycznych oraz pozyskiwania z nich energii. A to oznacza, że kolosalny koszt społeczny i ekologiczny takich działań jest trudniej zauważyć. Zasadnicze pytanie brzmi, czy chcemy globalnych rynków, które manipulują kosztami zewnętrznymi dla własnych korzyści, czy też wolimy politykę, która wymusi na nich zinternalizowanie tych kosztów – stwierdza Sovacool.
      Autorzy badań zwracają uwagę, że w wielu pakietach pomocowych, które mają rozruszać gospodarkę po pandemii uwzględniono olbrzymie kwoty dla przemysłu paliw kopalnych, motoryzacyjnego czy lotniczego. Jednak długotrwałe ożywienie gospodarcze może się nie udać, jeśli sektory te nie będą ponosiły całości kosztów, jakie są związane z ich działalnością, dodaje profesor Kim.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Autorzy artykułu opublikowanego w Americal Journal of Clinical Nutrition podważają powszechnie panujące przekonanie, że to nadmierna ilość spożywanego jedzenia prowadzi do otyłości. Ich zdaniem model bilansu energetycznego, zgodnie z którym nadwaga i otyłość pojawiają się, gdy pobieramy więcej energii niż wydatkujemy, zawiera liczne błędy. Proponują stosowanie modelu węglowodanowo-insulinowego, zgodnie z którym nadwagę i otyłość powoduje to, co jemy, a nie ile jemy.
      Zgodnie ze stosowanym obecnie modelem bilansu energetycznego zachęca się do spożywania mniejszych ilości pokarmów i większej aktywności fizycznej. Jednak działania takie nie przynoszą skutku, a osób z nadwagą i otyłych jest coraz więcej. Jak mówią autorzy wspomnianego artykułu, model bilansu energetycznego bierze pod uwagę podstawy fizyki, bez uwzględniania biologicznych mechanizmów prowadzących do przybierania na wadze. Dlatego też zaproponowali model węglowodanowo-insulinowy, zgodnie z którym ważniejsze jest to co jemy, a nie ile jemy. Ich zdaniem bowiem epidemia otyłości spowodowana jest częściowo przez hormonalną reakcję na zmianę jakości pożywienia, a w szczególności na obecność w dużych ilości cukru i wysoki indeks glikemiczny pokarmów, co prowadzi do zmian w metabolizmie.
      Wszędzie otacza nas wysoko przetworzona, smaczna żywność, która jest do tego intensywnie reklamowana. W tej sytuacji łatwo przyjmować więcej kalorii niż się potrzebuje, a na nierównowagę energetyczną wpływ ma też siedzący tryb życia. Zgodnie z tą filozofią przyjmowanie zbyt dużych ilości pożywienia w połączeniu z brakiem aktywności fizycznej prowadzi do nadwagi. Problem jednak w tym, że pomimo kampanii informacyjnych zachęcających do jedzenia mniej i ćwiczenia więcej, epidemia otyłości zatacza coraz szersze kręgi.
      Główny autor artykułu The Carbohydrate-Insulin Model: A Physiological Perspective on the Obesity Pandemic doktor David Ludwig z Boston Children's Hospital i Harvard Medical School mówi, że model bilansu energetycznego nie uwzględnia biologicznych przyczyn przybierania na wadze. Weźmy na przykład pod uwagę okres szybkiego wzrostu nastolatków. W tym czasie młodzi ludzie mogą zwiększyć spożywaną liczbę kalorii o 1000 dziennie. Ale czy to ta zwiększona ilość kalorii powoduje, że rosną czy też nagły wzrost powoduje, że są głodni i się przejadają?, zwraca uwagę Ludwig.
      Model węglowodanowo-insulinowy zakłada, że przyczyną nadwagi jest to co jemy, a nie ile jemy. Zgodnie z nim przyczyną współczesnej epidemii otyłości są współczesne nawyki żywieniowe, które powodują, że jemy bardzo dużo pokarmów o wysokim indeksie glikemicznym, szczególnie zaś wysoko przetworzonych, łatwych do strawienia węglowodanów. Taka żywność prowadzi do zmian w naszym metabolizmie, których wynikiem jest odkładanie się tłuszczu i przybieranie na wadze.
      Gdy spożywamy wysoko przetworzone węglowodany nasz organizm zwiększa wydzielanie insuliny, a zmniejsza wydzielanie glukagonu. To zaś powoduje, że komórki tłuszczowe dostają polecenie przechowywania większej ilości kalorii. A skoro więcej energii jest odkładane, to mięśnie i inne aktywne tkanki otrzymują mniej kalorii. Mózg zauważa więc, że ciało nie dostaje wystarczającej ilości energii i generuje sygnały, przez które czujemy się głodni. Jakby jeszcze tego było mało, gdy organizm próbuje przechowywać energię, metabolizm może zwalniać. W ten sposób możemy czuć się głodni, mimo że w naszym organizmie ciągle odkłada się tłuszcz.
      Dlatego też powinniśmy brać pod uwagę nie tylko to, ile jemy, ale również co jemy oraz jak żywność wpływa na hormony i metabolizm. Zdaniem Ludwiga, poważny błąd modelu bilansu energetycznego polega na tym, że traktuje on wszystkie kalorie tak samo, niezależnie od źródła, z jakiego je przyjmujemy.
      Model węglowodanowo-insulinowy jest znany nauce od 100 lat. Artykuł opublikowany na łamach The American Journal of Clinical Nutrition jest jego najbardziej wszechstronną analizą. W jej opracowaniu wzięło udział 17 ekspertów z USA, Danii oraz Kanady. Podsumowali oni dziesiątków prac naukowych wspierających model węglowodanowo-insulinowy. Na tej podstawie uważają, że w ramach polityki prozdrowotnej należy zwracać uwagę przede wszystkim na to, co jemy.
      Zmniejszenie ilości łatwych do strawienia węglowodanów, które zalały sieci spożywcze w obecnej epoce mody na dietę niskotłuszczową, pozytywnie wpłynie na biologiczne mechanizmy gromadzenia się tłuszczu w organizmie. Dzięki temu ludzie mogą tracić na wadze czując się przy tym mniej głodni, a chudnięcie będzie dla nich łatwiejsze, stwierdza Ludwig.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jednym z największych problemów, z jakim stykają się specjaliści pracujący przy fuzji jądrowej, są swobodnie przyspieszające elektrony, które w końcu osiągają prędkości bliskie prędkości światła czyli stają się cząstkami relatywistycznymi. Tak szybkie elektrony uszkadzają tokamak, w których przeprowadzana jest reakcja termojądrowa.
      Naukowcy z Princeton Plasma Physics Laboratory (PPPL) wykorzystali nowatorskie narzędzia diagnostyczne, dzięki którym są w stanie zarejestrować narodziny takich elektronów oraz liniowy i wykładniczy wzrost ich energii. Musimy być w stanie zarejestrować te elektrony przy ich początkowym poziomie energii, a nie dopiero wówczas, gdy mają maksymalną energię i przemieszczają się niemal z prędkością światła, wyjaśnia fizyk Luis Delgado-Aparicio, który stał na czele zespołu badawczego pracującego przy Madison Symmetric Torus (MST) na University of Wisconsin-Madison. Następnym krokiem będzie zoptymalizowanie sposobów na powstrzymanie tych elektronów, zanim ich liczba zacznie się lawinowo zwiększać, dodaje uczony.
      Reakcja termojądrowa czyli fuzja jądrowa, zachodzi m.in. w gwiazdach. Gdyby udało się ją opanować, mielibyśmy dostęp do niemal niewyczerpanego źródła czystej i bezpiecznej energii. Zanim jednak to się stanie, konieczne jest pokonanie kilku poważnych przeszkód.
      Dlatego też PPPL we współpracy z University of Wisconsin zainstalowało w MST specjalną kamerę, która już wcześniej sprawdziła się w tokamaku Alcator C-Mod w Massachusetts Institute of Technology. Kamera ta rejestruje nie tylko właściwości plazmy, ale również dystrybucję energii w czasie i przestrzeni. To pozwala uczonym obserwować m.in. wspomniane elektrony, które powstają przy niskich energiach.
      Badania nad superszybkimi elektronami prowadzone są w MST, gdyż urządzenie to skonstruowane jest tak, że elektrony te nie zagrażają jego pracy. Możliwości, jakimi dysponuje Luis, odnośnie zlokalizowania miejsca narodzin i początkowego liniowego wzrostu energii tych elektronów, a następnie ich śledzenia, są fascynujące. Następnym etapem będzie porównanie uzyskanych wyników z modelami komputerowymi. To pozwoli nam na lepsze zrozumienie tego zjawiska i może prowadzić w przyszłości do opracowania metod zapobiegających tworzeniu się takich elektronów, mówi profesor Carey Forest z University of Wisconsin.
      Chciałbym zebrać wszystkie doświadczenia, jakich nabyliśmy podczas pracy z MST i zastosować je w dużym tokamaku, stwierdza Delgado-Aparicio. Niewykluczone, że już wkrótce dwaj doktorzy, których mentorem jest Delgado-Aparicio, będą mogli wykorzystać te doświadczenia w Tungsten Einvironment in Steady-state Tokamak (WEST) we Francji. Chcę razem z nimi wykorzystać kamery do rejestrowania wielu różnych rzeczy, takich jak transport cząstek, ogrzewanie falami radiowymi, badanie szybkich elektronów. Chcemy dowiedzieć się, jak spowodować, by elektrony te stały się mniej szkodliwe. A to może być bardzo bezpieczny sposób pracy z nimi.
      Z Delgado-Aparicio współpracuje kilkudziesięciu specjalistów, w tym naukowcy Uniwersytetu Tokijskiego, japońskich Narodowych Instytutów Badań i Technologii Kwantowych i Radiologicznych czy eksperci ze szwajcarskiej firmy Dectris, która wytwarza różnego typu czujniki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zapotrzebowanie na energię elektryczną rośnie z roku na rok. Dlatego też pojawia się coraz więcej rozwiązań tego problemu, a jednym z nich jest produkcja energii ze związków chemicznych z minimalnym wpływem na środowisko naturalne. Przykładem może być nadtlenek wodoru (H2O2). Choć produkowany jest od XIX wieku, nadal przykuwa uwagę świata nauki. Ostatnio, zespół naukowców  Instytutu Chemii Fizycznej Polskiej Akademii Nauk kierowany przez prof. Marcina Opałło zaprezentował wyniki badań reakcji generowania nadtlenku wodoru na granicy faz niemieszających się rozpuszczalników, takich jak  woda i olej. Zgłębili oni wpływ różnych parametrów na wydajność reakcji redukcji tlenu do nadtlenku wodoru.
      Rosnące w zawrotnym tempie zapotrzebowanie na energię, ograniczone zasoby paliw kopalnych i zanieczyszczenia spowodowane przez przemysł energetyczny stawiają naukowcom wyzwania takie jak poszukiwanie nowych, opłacalnych i ekologicznych rozwiązań do produkcji energii. Spośród różnych metod produkcji energii, wykorzystanie elektrochemicznych metod wytwarzania związków chemicznych na pierwszy rzut oka nie wydaje się mieć ogromnego potencjału do zastosowania w sektorze energetycznym.
      Jednym z obiecujących związków jest cząsteczka nadtlenku wodoru (H2O2) o silnych właściwościach utleniających i wybielających. Dostępna niemal wszędzie w stosunkowo niskich stężeniach np. 3-6% H2O2 była wykorzystywana jest głównie do zastosowań antyseptycznych takich jak dezynfekcja skóry, aby zapobiec infekcji podczas drobnych skaleczeń. Natomiast nadal jest szeroko stosowana w przemyśle celulozowym, papierniczym i tekstylnym jako środek utleniający oraz jako bezzapachowy substytut chloru w oczyszczaniu ścieków i wody pitnej.
      Pomimo, że obecnie nie zaleca się używania H2O2 do przemywania skaleczeń, związek cieszy się ogromną popularnością i jest stosowany nawet jako jedno z paliw napędzających rakiety, satelity i torpedy. Może być również wykorzystany jako paliwo lub utleniacz do ogniw paliwowych, chociaż jego masowa produkcja jest daleka od zrównoważonej i ekologicznej. Wymaga ona wielu chemikaliów szkodliwych dla zdrowia i środowiska naturalnego. Dlatego też poszukuje się nowych metod wytwarzania H2O2 .
      Ostatnio, naukowcy z Instytutu Chemii Fizycznej Polskiej Akademii Nauk pod kierunkiem prof. Marcina Opałło we współpracy z prof. Hubertem H. Girault z Politechniki w Lozannie Ecole Polytechnique Federale de Lausanne przedstawili szczegółowe badania nad wytwarzaniem nadtlenku wodoru poprzez redukcję ditlenu na granicy dwóch niemieszających się cieczy, takich jak woda i olej. Pierwsza z nich to wodny roztwór kwasu, a druga to niemieszająca się z wodą ciecz składająca się wyłącznie z jonów, tzw. ciecz jonowa. Badacze porównali swoje dane z tymi uzyskanymi na granicy faz z rozpuszczalnikami molekularnymi o znacznie mniejszej lepkości, a uzyskane wyniki stanowią znaczącą część pracy doktorskiej pierwszej autorki publikacji, obecnie dr Justyny Kalisz.
      Naukowcy wskazali, ze badanie  wpływu rozpuszczalnika, na wydajność reakcji może pomóc w lepszym poznaniu mechanizmu wytwarzania H2O2. Porównując dane dla granic faz ciecz-ciecz wytworzonych z udziałem trzynastu cieczy jonowych i trzech rozpuszczalników molekularnych o lepkości różniącej się o trzy rzędy wielkości doszli do wniosku, że to nie transport reagentów, ale kinetyka redukcji ditlenu limituje szybkość reakcji. Odkryli również, że kierunek międzyfazowego ruchu jonów towarzyszącego przeniesieniu elektronów z donora rozpuszczonego w fazie olejowej jest inny w przypadku cieczy jonowych i rozpuszczalników molekularnych.
      W tej pracy wykazaliśmy, że rodzaj cieczy jonowej wpływa na szybkość redukcji O2 do H2O2 na granicy faz olej-woda. Wytwarzanie H2O2 jest bardziej wydajne, gdy ciecz jonowa zawiera mniej hydrofobowe kationy – twierdzi prof. Opałło.
      Pokazaliśmy również, że zastosowanie pasty przygotowanej z proszku węglowego i cieczy jonowej jako fazy olejowej pozwala na elektrochemiczną regenerację donora elektronów co zwiększa wydajność reakcji międzyfazowej.
      Generowanie nadtlenku wodoru badano za pomocą skaningowej mikroskopii elektrochemicznej (SECM). Technika ta pozwala na określenie lokalnego stężenia produktu elektroaktywnego reakcji zachodzącej na granicy faz, w tym przypadku H2O2. W tej metodzie rejestrowany jest prąd elektroutleniania H2O2 na elektrodzie o średnicy dziesiątek mikronów poruszającej się prostopadle do granicy faz. Wydajność reakcji szacowano na podstawie zależności prądu od odległości od granicy faz ciecz-ciecz.
      Prof. Opałło zauważa: „Na podstawie danych SECM stwierdziliśmy, że proces jest kontrolowany przez kinetykę reakcji redukcji tlenu. Co ważne, duża lepkość cieczy jonowych pozwala na zastosowanie pasty przygotowanej z proszku węglowego i cieczy jonowej jako fazy olejowej do elektrochemicznej regeneracji donora elektronów w celu zwiększenia wydajności reakcji międzyfazowej. Pod tym względem badany układ można uznać za przykład homogennej katalizy redoks.”
      Badanie opisane w czasopiśmie ChemPhysChem ujawnia złożoność reakcji na granicy faz ciecz-ciecz. W przeciwieństwie do granicy faz elektroda-roztwór badany układ jest samoregenerujący i trudno go zanieczyścić. Choć do zastosowania granicy faz ciecz-ciecz do wytwarzania chemikaliów jest wciąż w daleka od komercyjnego zastosowania, to może mieć świetlaną przyszłość. Oprócz nadtlenku wodoru, innym przykładem reakcji możliwych do przeprowadzenia w podobny sposób jest wytwarzanie wodoru, głównie stymulowane światłem, ale to już inna historia.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...