Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Nie od dzisiaj wiadomo, że podczas snu utrwalamy sobie wspomnienia nabyte w ciągu dnia. Amerykańscy uczeni postanowili sprawdzić, czy podobnie dzieje się w przypadku innych ssaków.

W 2001 roku Matthew A. Wilson i Daoyun Ji z należącego do MIT Picower Institute for Learning and Memory prowadzili badania, które wykazały podwyższoną aktywność hipokampu u śpiących szczurów. Hipokamp odpowiada właśnie za pamięć.

Obecnie ci sami uczeni postanowili sprawdzić, czy szczury śnią. Naukowcy podłączyli do mózgu szczurów elektrody i zaczęli rejestrować wyniki. Okazało się, że w czasie snu aktywizuje się nie tylko hipokamp, ale i kora wzrokowa.

Co więcej, porównanie aktywności poszczególnych neuronów u szczurów, które przemierzały labirynt, a później spały, wykazało, że we śnie dochodzi do aktywizacji dokładnie tych samych neuronów. Uczeni wysnuli z tego wniosek, że zwierzęta nie tylko utrwalały sobie zdobytą w labiryncie wiedzę, ale śniło im się, że po nim wędrują.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcom udało się lepiej określić rolę snu w naszym życiu. Okazuje się, że w wieku około 30 miesięcy dochodzi do gwałtownego przemodelowania roli snu. Zmienia się ona z budowania mózgu na utrzymanie i naprawę.
      Naukowcy przeprowadzili analizę statystyczną ponad 60 studiów dotyczących snu. Analizowali czas snu, czas fazy REM, rozmiar mózgu i ciała. Na tej podstawie opracowali matematyczny model zmian snu w czasie rozwoju.
      Generalnie rzecz ujmując, istnieją dwie fazy snu. REM, charakteryzująca się szybkimi ruchami oczu, to głęboki sen podczas których śnimy. Oraz faza NREM, podczas której ruchy gałek ocznych są wolne. W tej fazie sny pojawiają się rzadko.
      Podczas fazy REM mózg tworzy nowe połączenia, budując i wzmacniając synapsy. W czasie snu móg jest też naprawiany i oczyszczany z produktów ubocznych, które nagromadziły się w czasie dnia.
      Analiza wykazała, że w wieku około 30 miesięcy dochodzi do fundamentalnej zmiany. Zamiast tworzyć i przecinać połączenia w czasie fazy REM, mózg skupia się głównie na naprawie. Zarówno w czasie fazy REM jak i NREM.
      Odkrycie, że ta zmiana jest tak radykalna i zachodzi jak za naciśnięciem przełącznika, było dla nas szokujące, przyznaje profesor biologii ewolucyjnej i medycyny obliczeniowej Van Savage z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA).
      Długość fazy REM zmniejsza się z wiekiem. U niemowląt, które śpią po 16 godzin na dobę, faza REM trwa przez około 50% czasu. Jednak w wieku około 30 miesięcy dochodzi do znacznego spadku długości fazy REM. Do wieku 10 lat REM zajmuje tylko 25% czasu snu, a do wieku 50 lat jest to 10–15 procent.
      Sen jest czymś powszechnym u zwierząt. Niemal tak oczywistym jak oddychanie i jedzenie. Powiedziałbym, że to jeden z filarów ludzkiego zdrowia, stwierdza Van Savage.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy z MIT opracowali kwantowy „ściskacz światła”, który redukuje szum kwantowy w laserach o 15%. To pierwszy taki system, który pracuje w temperaturze pokojowej. Dzięki temu możliwe będzie wyprodukowanie niewielkich przenośnych systemów, które będzie można dobudowywać do zestawów eksperymentalnych i przeprowadzać niezwykle precyzyjne pomiary laserowe tam, gdzie szum kwantowy jest obecnie poważnym ograniczeniem.
      Sercem nowego urządzenia jest niewielka wnęka optyczna znajdująca się w komorze próżniowej. We wnęce umieszczono dwa lustra, z których średnia jednego jest mniejsza niż średnica ludzkiego włosa. Większe lustro jest zamontowane na sztywno, mniejsze zaś znajduje się na ruchomym wsporniku przypominającym sprężynę. I to właśnie kształt i budowa tego drugiego, nanomechanicznego, lustra jest kluczem do pracy całości w temperaturze pokojowej. Wpadające do wnęki światło lasera odbija się pomiędzy lustrami. Powoduje ono, że mniejsze z luster, to na wsporniku zaczyna poruszać się w przód i w tył. Dzięki temu naukowcy mogą odpowiednio dobrać właściwości kwantowe promienia wychodzącego z wnęki.
      Światło lasera opuszczające wnękę zostaje ściśnięte, co pozwala na dokonywanie bardziej precyzyjnych pomiarów, które mogą przydać się w obliczeniach kwantowych, kryptologii czy przy wykrywaniu fal grawitacyjnych.
      Najważniejszą cechą tego systemu jest to, że działa on w temperaturze pokojowej, a mimo to wciąż pozwala na dobieranie parametrów z dziedziny mechaniki kwantowej. To całkowicie zmienia reguły gry, gdyż teraz będzie można wykorzystać taki system nie tylko w naszym laboratorium, które posiada wielkie systemy kriogeniczne, ale w laboratoriach na całym świecie, mówi profesor Nergis Mavalvala, dyrektor wydziału fizyki w MIT.
      Lasery emitują uporządkowany strumień fotonów. Jednak w tym uporządkowaniu fotony mają pewną swobodę. Przez to pojawiają się kwantowe fluktuacje, tworzące niepożądany szum. Na przykład liczba fotonów, które w danym momencie docierają do celu, nie jest stała, a zmienia się wokół pewnej średniej w sposób, który jest trudny do przewidzenia. Również czas dotarcia konkretnych fotonów do celu nie jest stały.
      Obie te wartości, liczba fotonów i czas ich dotarcia do celu, decydują o tym, na ile precyzyjne są pomiary dokonywane za pomocą lasera. A z zasady nieoznaczoności Heisenberga wynika, że nie jest możliwe jednoczesne zmierzenie pozycji (czasu) i pędu (liczby) fotonów.
      Naukowcy próbują radzić sobie z tym problemem poprzez tzw. kwantowe ściskanie. To teoretyczne założenie, że niepewność we właściwościach kwantowych lasera można przedstawić za pomocą teoretycznego okręgu. Idealny okrąg reprezentuje równą niepewność w stosunku do obu właściwości (czasu i liczby fotonów). Elipsa, czyli okrąg ściśnięty, oznacza, że dla jednej z właściwości niepewność jest mniejsza, dla drugiej większa.
      Jednym ze sposobów, w jaki naukowcy realizują kwantowe ściskanie są systemy optomechaniczne, które wykorzystują lustra poruszające się pod wpływem światła lasera. Odpowiednio dobierając właściwości takich systemów naukowcy są w stanie ustanowić korelację pomiędzy obiema właściwościami kwantowymi, a co za tym idzie, zmniejszyć niepewność pomiaru i zredukować szum kwantowy.
      Dotychczas optomechaniczne ściskanie wymagało wielkich instalacji i warunków kriogenicznych. Działo się tak, gdyż w temperaturze pokojowej energia termiczna otaczająca system mogła mieć wpływ na jego działanie i wprowadzała szum termiczny, który był silniejszy od szumu kwantowego, jaki próbowano redukować. Dlatego też takie systemy pracowały w temperaturze zaledwie 10 kelwinów (-263,15 stopni Celsjusza). Tam gdzie potrzebna jest kriogenika, nie ma mowy o niewielkim przenośnym systemie. Jeśli bowiem urządzenie może pracować tylko w wielkiej zamrażarce, to nie możesz go z niej wyjąć i uruchomić poza nią, wyjaśnia Mavalvala.
      Dlatego też zespół z MIT pracujący pod kierunkiem Nancy Aggarval, postanowił zbudować system optomechaczniczny z ruchomym lustrem wykonanym z materiałów, które absorbują minimalne ilości energii cieplnej po to, by nie trzeba było takiego systemu chłodzić. Uczeni stworzyli bardzo małe lustro o średnicy 70 mikrometrów. Zbudowano je z naprzemiennie ułożonych warstw arsenku galu i arsenku galowo-aluminowego. Oba te materiały mają wysoce uporządkowaną strukturę atomową, która zapobiega utratom ciepła. Materiały nieuporządkowane łatwo tracą energię, gdyż w ich strukturze znajduje się wiele miejsc, gdzie elektrony mogą się odbijać i zderzać. W bardziej uporządkowanych materiałach jest mniej takich miejsc, wyjaśnia Aggarwal.
      Wspomniane wielowarstwowe lustro zawieszono na wsporniku o długości 55 mikrometrów. Całości nadano taki kształt, by absorbowała jak najmniej energii termicznej. System przetestowano na Louisiana State University. Dzięki niemu naukowcy byli w stanie określić kwantowe fluktuacje liczby fotonów względem czasu ich przybycia do lustra. Pozwoliło im to na zredukowanie szumu o 15% i uzyskanie bardziej precyzyjnego „ściśniętego” promienia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Konsolidując pamięć wcześniejszego spożycia, glutaminianergiczne neurony piramidowe brzusznego i grzbietowego hipokampa odgrywają kluczową rolę w hamowaniu jedzenia/poboru energii w okresie poposiłkowym.
      Wspomnienia ostatnio zjedzonych pokarmów mogą stanowić potężny mechanizm kontroli zachowań związanych z odżywianiem, gdyż zapewniają zapis ostatniego spożycia, który prawdopodobnie przetrwa większość sygnałów hormonalnych i mózgowych generowanych przez posiłek - podkreśla dr Marise Parent z Uniwersytetu Stanowego Georgii. Co jednak zaskakujące, regiony mózgu, które pozwalają pamięci kontrolować przyszłe zachowania związane z odżywianiem, są w dużej mierze nieznane - dodaje.
      Komórki hipokampa dostają informacje o stanie łaknienia i są połączone z obszarami mózgu istotnymi dla zapoczątkowania i zahamowania jedzenia. Naukowcy postanowili więc sprawdzić, czy zaburzenie funkcji hipokampa po posiłku, kiedy wspomnienie jedzenia jest stabilizowane, może sprzyjać przyszłemu spożyciu, gdy komórki zaczynają działać normalnie.
      Autorzy artykułu z pisma eNeuro posłużyli się optogenetyką, która pozwala kontrolować pojedyncze neurony za pomocą światła. Gdy Amerykanie wykorzystali tę metodę, by zahamować komórki hipokampa po jedzeniu, okazało się, że zwierzęta jadły następny posiłek wcześniej i pochłaniały niemal 2-krotnie więcej jedzenia. Działo się tak, mimo że komórki działały już wtedy normalnie. Nie miało przy tym znaczenia, czy szczurom dawano paszę dla gryzoni, roztwór sacharozy czy wodę z sacharyną.
      Naukowcy byli zaskoczeni faktem, że szczury spożywały więcej sacharyny, bo ta nieposiadająca wartości odżywczych substancja słodząca generuje bardzo mało jelitowych sygnałów chemicznych charakterystycznych dla jedzenia. Mając to na uwadze, doszli do wniosku, że efekt, który dostrzegli, można wyjaśnić wpływem na konsolidację pamięci, a nie upośledzoną zdolnością do przetwarzania sygnałów żołądkowo-jelitowych.
      Amerykanie podkreślają, że uzyskane wyniki mają ogromne znaczenie dla zrozumienia przyczyn otyłości i opracowania metod jej leczenia. Wiele wskazuje na to, że wspieranie zależnych od hipokampa wspomnień tego, co, kiedy i jak dużo się zjadło, może być użyteczną strategią odchudzania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ludzie, którzy ucinają sobie długie drzemki w ciągu dnia albo przesypiają więcej godzin nocą, mogą być bardziej narażeni na udar.
      Naukowcy zauważyli, że w przypadku osób, które regularnie ucinały sobie w ciągu dnia drzemki trwające ponad 90 min, prawdopodobieństwo wystąpienia udaru było o 25% wyższe niż u ludzi, którzy regularnie odbywali drzemki trwające 1-30 min. Badani, którzy nie drzemali lub w przypadku których drzemki trwały 31 min-1 godz., nie byli bardziej zagrożeni udarem niż osoby drzemiące 1-30 min.
      Potrzeba więcej badań, by zrozumieć, w jaki sposób odbywanie dłuższych drzemek i przesypianie nocą większej liczby godzin może być powiązane z podwyższonym ryzykiem udaru. Wcześniejsze badania wykazały jednak, że u dłużej śpiących/drzemiących występują niekorzystne zmiany w poziomie cholesterolu i zwiększony obwód w talii, a to dwa czynniki ryzyka udaru - podkreśla dr Xiaomin Zhang z Huazhong University of Science and Technology. Poza tym długie drzemki i nocny sen mogą sugerować ogólnie nieaktywny tryb życia, co także wiąże się z podwyższonym ryzykiem udaru - dodaje.
      Badanie objęło 31.750 Chińczyków w średnim wieku 62 lat. Dotąd żaden z ochotników nie miał udaru ani poważnych problemów z sercem. Losy badanych śledzono średnio przez 6 lat. W tym czasie odnotowano 1557 udarów.
      Uczestników studium pytano o nawyki dot. snu i drzemek, które jak wyjaśnia Zhang, są w Chinach czymś powszechnym; okazało się, że 8% ludzi ucinało sobie drzemki trwające ponad 90 min, a 24% ujawniło, że śpi 9 lub więcej godzin.
      Autorzy raportu z pisma Neurology zauważyli, że ochotnicy śpiący nocą 9 lub więcej godzin o 23% częściej miewali w trakcie trwania studium udar niż osoby przesypiające nocą od 7 do mniej niż 8 godzin. Ludzie śpiący mniej niż 7 godzin lub między 8 a mniej niż 9 godzin nie byli bardziej zagrożeni udarem niż ochotnicy śpiący o 7 do mniej niż 8 godzin/noc.
      Badani będący miłośnikami zarówno długich drzemek, jak i długiego snu nocą byli aż o 85% bardziej zagrożeni udarem niż osoby drzemiące i śpiące przez umiarkowanie długi czas.
      Akademicy pytali też ludzi o jakość snu. Stwierdzili, że badani, którzy mówili, że śpią źle, o 29% częściej mieli udar w trakcie studium, w porównaniu do osób uznających jakość swego snu za dobrą.
      Podczas analiz wzięto poprawkę na różne potencjalnie istotne czynniki, np. nadciśnienie, cukrzycę i palenie.
      Uzyskane wyniki podkreślają znaczenie umiarkowania w zakresie długości drzemek i nocnego snu oraz podtrzymywania dobrej jakości snu, zwłaszcza u osób w średnim wieku i seniorów.
      Zhang dodaje, że badanie jego zespołu na charakter korelacyjny i nie wskazuje na związki przyczynowo-skutkowe między długim spaniem/drzemaniem i udarem.
      Ograniczeniem badania jest fakt, że dane na temat drzemek i snu pochodziły z kwestionariusza, a nie z pomiarów. Nie zbierano też informacji dot. zaburzeń snu, np. chrapania i bezdechu. Istnieje też możliwość, że skoro studium objęło wyłączenie starszych, zdrowych Chińczyków, uzyskane wyniki nie odnoszą się do innych grup.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Kolorado w Boulder odkryli, w jaki sposób zbyt krótki sen szkodzi zdrowiu sercowo-naczyniowemu.
      Okazuje się, że sen krótszy niż 7 godzin obniża poziom 3 miRNA we krwi (miRNA to jednoniciowa cząsteczka RNA, która reguluje ekspresję genów). Wcześniej wykazano, że hamują one białka zapalne.
      Nasze badanie wskazuje na nowy mechanizm, za pośrednictwem którego sen wpływa na stan serca i ogólną fizjologię - podkreśla prof. Christopher DeSouza.
      W jednym z wcześniejszych badań DeSouza ustalił, że mężczyźni, którzy śpią 6 godzin, mają dysfunkcyjne komórki śródbłonka i ich naczynia nie kurczą się i nie rozkurczają tak dobrze, jak naczynia osób przesypiających wystarczającą liczbę godzin.
      Czynniki leżące u podłoża tej dysfunkcji nie są jednak dobrze poznane.
      Amerykanie zaznaczają, że dokładna rola krążących miRNA i ich wpływ na układ sercowo-naczyniowy cieszą się ostatnio dużym zainteresowaniem badaczy. Rozwijane są leki na różne choroby, w tym na nowotwory, które mają korygować niewłaściwe sygnatury miRNA.
      One są jak hamulce komórkowe, dlatego jeśli brakuje właściwych miRNA, może to mieć ogromny wpływ na zdrowie komórki.
      W ramach pierwszego badania dot. wpływu niedoboru snu na sygnatury krążącego miRNA zespół DeSouzy pobrał próbki krwi od 24 zdrowych kobiet i mężczyzn w wieku 44-62 lat. Wypełniali oni kwestionariusze opisujące ich zwyczaje senne, dlatego wiadomo było, że połowa przesypia 7-8,5 godziny, a druga połowa 5-6,8 godziny.
      Naukowcy mierzyli poziom 9 miRNA, które wcześniej powiązano ze stanem zapalnym, funkcjonowaniem immunologicznym czy zdrowiem naczyniowym.
      Okazało się, że osoby z niedoborem snu miały o 40-60% niższy poziom 3 krążących miRNA: miR-125A, miR-126 i miR-146a (wcześniej wykazano, że hamują one białka zapalne).
      Nie jest jasne, czemu 7 lub 8 wydają się "cyframi magicznymi". Jest jednak możliwe, że ludzie potrzebują 7 godzin snu, by podtrzymać poziom ważnych regulatorów fizjologicznych, takich jak miRNA.
      Obecnie trwają badania, które mają pokazać, czy wprowadzenie zdrowych nawyków sennych może odtworzyć zdrowe stężenia miRNA.
      DeSouza dodaje, że niewykluczone, że w przyszłości krążące miRNA będą markerami chorób sercowo-naczyniowych u osób z niewystarczającą ilością snu.

      « powrót do artykułu
×
×
  • Create New...