Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Szkockie destylarnie zasilą 9 tysięcy gospodarstw domowych energią i ciepłem ze spalania odpadów po produkcji whisky.

W projekcie biorą udział niektóre z najbardziej znanych tutejszych destylarni. Ostatnio podpisano kontrakty na budowę zakładu w Rothes w słynącym z whisky regionie Strathspey. Ma on powstać do 2013 roku. Realizacja całości będzie kosztować 50 mln funtów.

Flagowy przemysł Szkocji generuje ogromne ilości odpadów w postaci wytłoków z ziarna oraz osadów z miedzianych destylatorów. Spółka joint venture Helius Energy i Combination of Rothes Distillers (CoRD) zamierza spalać wytłoki z dodatkiem drewnianych strużyn. Energię do domów ma dostarczać duńska firma inżynieryjna Energie Technick. Z osadów z destylatora powstanie zagęszczony nawóz organiczny i pasza dla zwierząt lokalnych rolników.

Niektórzy ekolodzy zgłosili zastrzeżenia, że część drewna będzie pochodzić spoza regionu, jednak zwolennicy projektu podkreślają, że moc rzędu 7,2 megawata (tyle dałyby dwie duże turbiny wiatrowe) doskonale odpowiada lokalnemu zapotrzebowaniu i pozwala zagospodarować marnowane dotąd materiały.

Pięćdziesiąt ze 100 szkockich destylarni znajduje się w regionie Strathspey, dlatego jak twierdzi dyrektor generalny CoRD Frank Burns, to idealna lokalizacja dla bioelektrowni, która powstanie w już funkcjonującym ośrodku przemysłowym. Mamy duże wsparcie ze strony lokalnej społeczności. Na etapie planowania nie zgłoszono żadnych obiekcji [...].

Do zakładu trafią odpady z 16 destylarni w Strathspey, w tym ze znanych Glenlivet, Chivas Regal, Macallan i Famous Grouse. Wszystkie znajdują się w pobliżu planowanej spalarni.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W Szkole Doktorskiej Uniwersytetu Przyrodniczego we Wrocławiu trwają intensywne prace nad... zapachem whisky. A właściwie nad otrzymywaniem związków zapachowych takich jak whisky lakton, aerangis lakton i piperonal. Whisky lakton występuje naturalnie w dębie, a po raz pierwszy odkryto go w alkoholach dojrzewających w dębowych beczkach, jak whisky czy koniak. Z kolei Aerangis lakton występuje w orchideach, a piperonal w wanilii czy fiołku.
      Prace nad pozyskiwaniem tych związków prowadzi doktorant Dawid Hernik. Te związki chemiczne są szeroko stosowane jako dodatki sensoryczne do żywności, ale mają też zastosowanie w przemyśle farmaceutycznym, kosmetycznym i perfumeryjnym. W przypadku laktonów, z którymi pracuję, sprawa się komplikuje, ponieważ te wspomniane posiadają dwa centra stereogeniczne, więc występują w formie czterech stereoizomerów. Prosto mówiąc, możemy sobie wyobrazić, że każdy z tych związków ma cztery formy, składające się z takich samych atomów, ale przestrzennie inaczej ułożonych. Sprawia to, że każdy z tych stereoizomerów cechuje się odmiennym zapachem. Na przykładzie whisky laktonu: jeden z nich ma zapach ziemno-drzewny, natomiast drugi przypomina seler. Wszystkie związki otrzymuję na drodze biotransformacji, a więc metody, w której do otrzymania produktu wykorzystuję całe komórki mikroorganizmów lub enzymy z nich izolowane, wyjaśnia młody naukowiec.
      Hernik wykorzystuje w swojej pracy najczęściej hodowle całych komórek bakterii lub grzybów strzępkowych. Dodaje do nich konkretny związek, w celu modyfikacji. Dzięki tej metodzie produkcja pożądanego związku jest często tańsza niż w przypadku metod chemicznych i charakteryzuje się większą wydajnością, gdyż cały proces zostaje skrócony do jednego etapu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z University College London (UCL) ostrzegają, że w ciągu najbliższych 60 lat część ze szkockich producentów whisky może zostać zmuszona do ograniczenia lub wstrzymania produkcji. Wszystko z powodu zmian klimaty, w wyniku których wzrośnie temperatura, a Szkocja doświadczy susz. Niekorzystnie wpłynie to na trzy główne składniki whisky – wodę, jęczmień i drożdże. Raport nt. wpływu zmian klimatu na produkcję whisky zamówiła destylarnia Glengoyne.
      Do wyprodukowania litra whisky potrzeba 46,9 wody. Autorzy raportu informują, że szkockie destylarnie zużywają rocznie około 61 miliardów litrów wody. Wody tej może brakować w ocieplającym się świecie. Taka sytuacja miała już zresztą miejsce w 2018 roku, kiedy to 5 destylarni na Islay – słynnej z takich marek jak Laphroaig, Lagavulin czy Ardbeg – musiało ograniczyć produkcję z powodu suszy. Podobnych kłopotów doświadczyły wówczas dwie destylarnie z Pertshire. W tym samym roku  Glenfarclas poinformowała o utracie całej miesięcznej produkcji z powodu wysokich temperatur.
      Jęczmień, z którego wytwarzany jest szkocki single malt, to zboże dość odporne na suszę. Ale wysokie temperatury potrafią mu zaszkodzić. Naukowcy z UCL przypomnieli, że fala upałów z 2018 roku spowodowała w Wielkiej Brytanii spadek produkcji jęczmienia jarego o 7,9%. To zaś spowodowało, że jego cena wzrosła ze 145 do 179 funtów za tonę. Szkoccy producenci whisky używają rocznie około 800 000 ton tego zboża, zatem taki wzrost cen to dodatkowy koszt 27 milionów funtów. Jednocześnie jednak uczeni zauważają, że wyższe temperatury w Szkocji mogą zwiększyć produkcję kukurydzy, która jest używana do produkcji whisky zbożowej (grain whisky). To, co prawda nie to samo co najszlachetniejsza odmiana whisky, czyli  single malt, jednak whisky zbożowa – chociaż rzadko butelkowana samodzielnie – stanowi istotny składnik whisky mieszanych (blended).
      To jednak marne pocieszenie w obliczu faktu, że cieplejsze lata i łagodniejsze zimy nie tylko spowodują problemy z wodą i jęczmieniem, ale doprowadzą do zwiększenia populacji gatunków inwazyjnych, szkodników i chorób.
      Szkocję postrzega się jako wilgotne, deszczowe miejsce ze stałym dostępem do wody. Jednak gdzie i kiedy pada ulega zmianie wraz ze zmianami klimatu. To zaś może spowodować niedobory wody i zmienić jej charakter, wpływając na nasz ulubiony napój. Dlatego odpowiednie planowanie to podstawa ochrony whisky, mówi główna autorka badań, Carole Roberts. Uczona dodaje, że zmiany klimatyczne mogą doprowadzić też do zmiany smaku whisky. Cały proces produkcji, w tym słodowanie, fermentacja, destylacja i dojrzewanie był przez długi czas udoskonalany z uwzględnieniem nadmorskiego klimatu Szkocji. Zmiana temperatury powietrza i wody grozi utratą smaku, charakteru i jakości whisky.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Eksperci z Rocky Mountain Institute opublikowali raport, z którego dowiadujemy się, że koszty produkcji energii z węgla osiągnęły punkt zwrotny i obecnie energia ta na większości rynków przegrywa konkurencję cenową z energią ze źródeł odnawialnych. Z analiz wynika, że już w tej chwili koszty operacyjne około 39% wszystkich światowych elektrowni węglowych są wyższe niż koszty wybudowania od podstaw nowych źródeł energii odnawialnej.
      Sytuacja ekonomiczna węgla będzie błyskawicznie się pogarszała. Do roku 2025 już 73% elektrowni węglowych będzie droższych w utrzymaniu niż budowa zastępujących je odnawialnych źródeł energii. Autorzy raportu wyliczają, że gdyby nagle cały świat podjął decyzję o wyłączeniu wszystkich elektrowni węglowych i wybudowaniu w ich miejsce odnawialnych źródeł energii, to przeprowadzenie takiej operacji stanie się opłacalne już za dwa lata.
      Szybsze przejście od węgla do czystej energii jest w zasięgu ręki. W naszym raporcie pokazujemy, jak przeprowadzić taką zmianę, by z jednej strony odbiorcy energii zaoszczędzili pieniądze, a z drugiej strony, by pracownicy i społeczności żyjące obecnie z energii węglowej mogli czerpać korzyści z energetyki odnawialnej, mówi Paul Bodnar, dyrektor Rocky Mountain Institute.
      Autorzy raportu przeanalizowali sytuację ekonomiczną 2472 elektrowni węglowych na całym świecie. Wzięli też pod uwagę koszty wytwarzania energii ze źródeł odnawialnych oraz jej przechowywania. Na podstawie tych danych byli w stanie ocenić opłacalność energetyki węglowej w 37 krajach na świecie, w których zainstalowane jest 95% całej światowej produkcji energii z węgla. Oszacowali też koszty zastąpienia zarówno nieopłacalnej obecnie, jak o opłacalnej, energetyki węglowej przez źródła odnawialne.
      Z raportu dowiadujmy się, że gdyby na skalę światową zastąpić nieopłacalne źródła energii z węgla źródłami odnawialnymi, to w bieżącym roku klienci na całym świecie zaoszczędziliby 39 miliardów USD, w 2022 roczne oszczędności sięgnęłyby 86 miliardów, a w roku 2025 wzrosłyby do 141 miliardów. Gdyby jednak do szacunków włączyć również opłacalne obecnie elektrownie węglowe, innymi słowy, gdybyśmy chcieli już teraz całkowicie zrezygnować z węgla, to tegoroczny koszt netto takiej operacji wyniósłby 116 miliardów USD. Tyle musiałby obecnie świat zapłacić, by już teraz zrezygnować z generowania energii elektrycznej z węgla. Jednak koszt ten błyskawicznie by się obniżał. W roku 2022 zmiana taka nic by nie kosztowała (to znaczy koszty i oszczędności by się zrównoważyły), a w roku 2025 odnieślibyśmy korzyści finansowe przekraczające 100 miliardów dolarów w skali globu.
      W Unii Europejskiej już w tej chwili nieopłacalnych jest 81% elektrowni węglowych. Innymi słowy, elektrownie te przeżywałyby kłopoty finansowe, gdyby nie otrzymywały dotacji z budżetu. Do roku 2025 wszystkie europejskie elektrownie węglowe będą przynosiły straty. W Chinach nieopłacalnych jest 43% elektrowni węglowych, a w ciągu najbliższych 5 lat nieopłacalnych będzie 94% elektrowni węglowych. W Indiach zaś trzeba dopłacać obecnie do 17% elektrowni, a w roku 2025 nieopłacalnych będzie 85% elektrowni.
      Co ważne, w swoich wyliczeniach dotyczących opłacalności elektrowni węglowych analitycy nie brali pod uwagę zdrowotnych i środowiskowych kosztów spalania węgla.
      Energia węglowa szybko staje się nieopłacalna i to nie uwzględniając kosztów związanych z prawem do emisji i regulacjami odnośnie zanieczyszczeń powietrza. Zamknięcie elektrowni węglowych i zastąpienie ich tańszymi alternatywami nie tylko pozwoli zaoszczędzić pieniądze konsumentów i podatników, ale może też odegrać znaczną rolę w wychodzeniu gospodarki z kryzysu po pandemii, mówi Matt Gray stojący na czele Carbon Tracker Initiative.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Uniwersytecie w Glasgow po raz pierwszy eksperymentalnie potwierdzono teorię dotyczącą pozyskiwania energii z czarnych dziur. W 1969 roku wybitny fizyk Roger Penrose stwierdził, że można wygenerować energię opuszczając obiekt do ergosfery czarnej dziury. Ergosfera to zewnętrzna część horyzontu zdarzeń. Znajdujący się tam obiekt musiałby poruszać się szybciej od prędkości światła, by utrzymać się w miejscu.
      Penrose przewidywał, że w tym niezwykłym miejscu w przestrzeni obiekt nabyłby ujemną energię. Zrzucając tam obiekt i dzieląc go na dwie części tak, że jedna z nich wpadnie do czarnej dziury, a druga zostanie odzyskana, spowodujemy odrzut, który będzie mierzony wielkością utraconej energii negatywnej, a to oznacza, że odzyskana część przedmiotu zyska energię pobraną z obrotu czarnej dziury. Jak przewidywał Penrose, trudności inżynieryjne związane z przeprowadzeniem tego procesu są tak wielkie, że mogłaby tego dokonać jedynie bardzo zaawansowana obca cywilizacja.
      Dwa lata później znany radziecki fizyk Jakow Zeldowicz uznał, że teorię tę można przetestować w prostszy, dostępny na Ziemi sposób. Stwierdził, że „skręcone” fale światła uderzające o powierzchnię obracającego się z odpowiednią prędkością cylindra zostaną odbite i przejmą od cylindra dodatkową energię. Jednak przeprowadzenie takiego eksperymentu było, i ciągle jest, niemożliwe ze względów inżynieryjnych. Zeldowicz obliczał bowiem, że cylinder musiałby poruszać się z prędkością co najmniej miliarda obrotów na sekundę.
      Teraz naukowcy z Wydziału Fizyki i Astronomii University of Glasgow opracowali sposób na sprawdzenie teorii Penrose'a. Wykorzystali przy tym zmodyfikowany pomysł Zeldowicza i zamiast "skręconych" fal światła użyli dźwięku, źródła o znacznie niższej częstotliwości, i łatwiejszego do użycia w laboratorium.
      Na łamach Nature Physics Brytyjczycy opisali, jak wykorzystali zestaw głośników do uzyskania fal dźwiękowych, skręconych na podobieństwo fal świetlnych w pomyśle Zeldowicza. Dźwięk został skierowany w stronę obracającego się piankowego dysku, który go absorbował. Za dyskiem umieszczono zestaw mikrofonów, które rejestrowały dźwięk przechodzący przez dysk, którego prędkość obrotowa była stopniowo zwiększana.
      Naukowcy stwierdzili, że jeśli teoria Penrose'a jest prawdziwa, to powinni odnotować znaczącą zmianę w częstotliwości i amplitudzie dźwięku przechodzącego przez dysk. Zmiana taka powinna zajść w wyniku efektu Dopplera.
      Z liniową wersją efektu Dopplera wszyscy się zetknęli słysząc syrenę karetki pogotowia, której ton wydaje się rosnąć w miarę zbliżania się pojazdu i obniżać, gdy się on oddala. Jest to spowodowane faktem, że gdy pojazd się zbliża, fale dźwiękowe docierają do nas coraz częściej, a gdy się oddala, słyszymy je coraz rzadziej. Obrotowy efekt Dopplera działa podobnie, jednak jest on ograniczony do okrągłej przestrzeni. Skręcone fale dźwiękowe zmieniają ton gdy są mierzone z punktu widzenia obracającej się powierzchni. Gdy powierzchnia ta obraca się odpowiednio szybko z częstotliwością dźwięku dzieje się coś dziwnego – przechodzi z częstotliwości dodatniej do ujemnej, a czyniąc to pobiera nieco energii z obrotu powierzchni, wyjaśnia doktorantka Marion Cromb, główna autorka artykułu.
      W miarę jak rosła prędkość obrotowa obracającego się dysku, ton dźwięku stawał się coraz niższy, aż w końcu nie było go słychać. Później znowu zaczął rosnąć, aż do momentu, gdy miał tę samą wysokość co wcześniej, ale był głośniejszy. Jego amplituda była o nawet 30% większa niż amplituda dźwięku wydobywającego się z głośników.
      To co usłyszeliśmy podczas naszych eksperymentów było niesamowite. Najpierw, w wyniku działania efektu Dopplera częstotliwość fal dźwiękowych zmniejszała się w miarę zwiększania prędkości obrotowej dysku i spadła do zera. Później znowu pojawił się dźwięk. Stało się tak, gdyż doszło do zmiany częstotliwości fal z dodatniej na ujemną. Te fale o ujemnej częstotliwości były w stanie pozyskać część energii z obracającego się dysku i stały się głośniejsze. Zaszło zjawisko, które Zeldowicz przewidział w 1971 roku, dodaje Cromb.
      Współautor badań, profesor Daniele Faccio, stwierdza: jesteśmy niesamowicie podekscytowani faktem, że mogliśmy eksperymentalnie potwierdzić jedną z najdziwniejszych hipotez fizycznych pół wieku po jej ogłoszeniu. I że mogliśmy potwierdzić teorię dotyczącą kosmosu w naszym laboratorium w zachodniej Szkocji. Sądzimy, że otwiera to drogę do kolejnych badań. W przyszłości chcielibyśmy badać ten efekt za pomocą różnych źródeł fal elektromagnetycznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Często i mało, czy rzadko, ale do syta? Gdyby chodziło o dietę, większość specjalistów postawiłaby na odpowiedź 1, ale w przypadku magazynowania energii jest odwrotnie. Okazuje się, że więcej można jej zmieścić ładując rzadko, ale do pełna.Taki przynajmniej wniosek płynie z badań przeprowadzonych przez zespół naukowców IChF PAN.
      Doświadczenia dotyczyły co prawda wyidealizowanych, dwuwymiarowych układów sieciowych, ale w końcu zasada to zasada. Dr Anna Maciołek, jedna z autorów pracy opublikowanej w Physical Review opisuje ją tak: Chcieliśmy zbadać, jak zmienia się sposób magazynowania energii w układzie,  gdy  pompujemy  do  niego  energię  w  postaci  ciepła,  innymi  słowy – lokalnie  go podgrzewamy.
      Wiadomo,  że ciepło  w  układach  się  rozprzestrzenia, dyfunduje.  Ale czy na gromadzenie energii ma wpływ sposób jej dostarczania; fachowo mówiąc „geometria podawania”? Czy ma znaczenie, że podajemy dużo energii w krótkim czasie i potem długo nic, i znowu dużo energii, czy też gdy podajemy malutkie porcje  tej energii, ale za to jedna po drugiej, niemal bez przerw?
      Cykliczne podawanie energii jest bardzo powszechne w naturze. Sami dostarczamy jej sobie w ten sposób, jedząc. Tę samą liczbę kalorii można dostarczyć w jednej lub dwóch dużych porcjach zjadanych w ciągu doby, albo rozbić ją na 5-7 mniejszych posiłków, między którymi są krótsze przerwy. Naukowcy wciąż się spierają, który  sposób jest dla organizmu lepszy. Jeśli jednak  chodzi o dwuwymiarowe układy sieciowe, to już wiadomo, że pod względem efektywności magazynowania wygrywa metoda „rzadko a dużo”.
      Zauważyliśmy, że w zależności od tego, w jakich porcjach i jak często podajemy energię, ilość, jaką układ potrafi zmagazynować, zmienia się. Największa jest wtedy, gdy porcje energii są duże, ale odstępy czasowe między ich podaniem też są długie, wyjaśnia Yirui Zhang, doktorantka w IChF PAN. Co ciekawe, okazuje się, że gdy taki układ magazynujący podzielimy wewnętrznie na swego rodzaju przedziały, czy też komory, to ilość energii możliwej do zmagazynowania w takim podzielonym ‘akumulatorze’ – o ile bylibyśmy go w stanie skonstruować – wzrośnie. Innymi słowy, trzy małe baterie zmagazynują więcej energii niż jedna duża, precyzuje badaczka. Wszystko to przy założeniu, że całkowita ilość wkładanej do układu energii jest taka sama, zmienia się tylko sposób jej dostarczania.
      Choć badania prowadzone przez zespół IChF PAN należą do podstawowych i ukazują po prostu fundamentalną  zasadę  rządzącą magazynowaniem energii w magnetykach, ich potencjalne zastosowania  są  nie do  przecenienia.  Wyobraźmy  sobie  np.  możliwość  ładowania  baterii elektrycznego samochodu nie w kilka godzin, lecz w kilkanaście minut albo znaczące zwiększenie pojemności  takich  akumulatorów  bez  zmiany  ich  objętości,  czyli  wydłużenie  zasięgu  auta  na jednym ładowaniu.  Nowe  odkrycie  może  też  w  przyszłości  zmienić  sposoby  ładowania  baterii różnego typu poprzez ustalenie optymalnej periodyczności dostarczania do nich energii

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...