Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Kable izolowane białkiem
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Inżynierowie z Arizona State University, U.S. Army Research Laboratory, Lehigh University i Louisiana State University stworzyli wyjątkowo stabilny w wysokich temperaturach stop miedzi o niezwykłej wytrzymałości mechanicznej. Materiał Cu-3-Ta-0.5Li opisany został na łamach Science. Nasz stop czerpie z wyjątkowej wytrzymałości nadstopów niklu, wyjaśnia profesor Kiran Solanki, współautor badań.
Obecnie nadstopy (superstopy) niklu, materiały charakteryzujące się dużą żarowytrzymałością – czyli zdolnością do znoszenia znacznych obciążeń w wysokiej temperaturze – i odporne na korozję wykorzystywane są tam, gdzie tego typu wyjątkowe właściwości są koniecznością. Spotkamy je w przemyśle lotniczym i kosmicznym, turbinach gazowych czy urządzeniach wykorzystywanych w przemyśle chemicznym. Wciąż jednak trwają poszukiwania nowych materiałów. Szczególnie duże zapotrzebowanie istnieje ze strony przemysłu lotniczego, kosmicznego i obronnego.
Nowy materiał zawdzięcza swoje wyjątkowe właściwości unikatowej strukturze litu i miedzi uzyskanej przez strącanie (precypitację), która otoczona jest warstwą bogatą w tantal. Dodanie dokładnie 0,5 procenta litu zmieniło strukturę materiału. Wcześniej układ Cu-Ta miał niestabilną strukturę kulistą, zaś po dodaniu Li zmienił się w stabilne struktury sześcienne.
Właściwości takiego materiału są imponujące. Cu-3Ta-0.5Li pozostaje stabilny przez ponad 10 000 godzin w temperaturze 800 stopni Celsjusza. W temperaturze pokojowej jego granica plastyczności – czyli granica poza którą zaczyna się trwale odkształcać – wynosi 1120 MPa. Jest więc znacznie powyżej granicy plastyczności dla tytanu, wynoszącej 880 MPa. Nowy materiał jest też wyjątkowo odporny na pełzanie, czyli powolne odkształcanie pod wpływem długotrwałego obciążenia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Szybką i bezbłędną klasyfikację białek, wykrywanie w nich miejsc wiążących potencjalne leki, identyfikowanie białek występujących na powierzchni wirusów, a także badania np. RNA, umożliwia nowe narzędzie bioinformatyczne opracowane przez naukowców z Wydziału Biologii UW.
BioS2Net, czyli Biological Sequence and Structure Network, jest zaawansowanym algorytmem wykorzystującym uczenie maszynowe, pozwalającym na klasyfikację nowo poznanych białek nie tylko na podstawie podobieństwa sekwencji aminokwasowych, ale także ich struktury przestrzennej. Publikacja na jego temat ukazała się na łamach pisma International Journal of Molecular Sciences.
Narzędzie opracował zespół kierowany przez dr. Takao Ishikawę z Zakładu Biologii Molekularnej Wydziału Biologii UW we współpracy z naukowcem z Wydziału Matematyki, Informatyki i Mechaniki UW. Jak mówią sami autorzy, jego głównym zastosowaniem jest usprawniona klasyfikacja białek, ponieważ obecnie stosowany system klasyfikacji strukturalnej opiera się na żmudnej pracy polegającej na porównywaniu struktur nowych białek do tych już skategoryzowanych.
Istnieje co prawda jego zautomatyzowany odpowiednik, jednak jest on bardzo restrykcyjny i bierze pod uwagę wyłącznie podobieństwo sekwencji białek, całkowicie pomijając ich strukturę. Takie narzędzie jak BioS2Net potencjalnie ma szansę znacząco usprawnić cały proces – wyjaśnia dr Ishikawa. Dodatkowo opracowana przez nas architektura może zostać użyta (po niewielkich przeróbkach) do innych zadań, niekoniecznie związanych z klasyfikacją. Przykładowo można by jej użyć do wykrywania w białku miejsc wiążących potencjalne leki lub do identyfikacji białek występujących na powierzchni wirusów.
Można sobie np. wyobrazić sytuację, w której dotychczas zaklasyfikowane do innych grup białka, dzięki zastosowaniu BioS2Net zostaną skategoryzowane jako bardzo podobne do siebie pod względem budowy powierzchni, mimo innego zwinięcia łańcucha białkowego wewnątrz struktury. I wówczas niewykluczone, że cząsteczka oddziałująca z jednym białkiem (np. jako lek) okaże się także skutecznym interaktorem dla drugiego – wymienia dalsze potencjalne zastosowania praktyczne narzędzia dr Ishikawa. Innym ciekawym zastosowaniem mogłoby być np. wykrywanie miejsc wiążących w białkach, które mogą stanowić albo cel dla leków, albo punkt interakcji z białkiem wirusowym.
Działanie BioS2Net opiera się na wykonywanych po sobie operacjach matematycznych, które bazują na danych o konkretnym białku. Do pracy narzędzie potrzebuje tychże danych (im więcej, tym lepiej), odpowiedniego oprogramowania zdolnego do wykonywania skomplikowanych obliczeń związanych z treningiem sieci neuronowej oraz sporej ilości czasu.
W efekcie BioS2Net tworzy unikatową reprezentację każdego białka w postaci wektora o stałym rozmiarze. Można to porównać do czegoś w rodzaju kodu kreskowego opisującego każde z poznanych białek – tłumaczy dr Ishikawa. Narzędzie świetnie nadaje się do klasyfikacji białek na podstawie sekwencji aminokwasowej oraz struktury przestrzennej. Szczególnie istotne jest to, że można dzięki niemu wykryć białka o podobnej strukturze trójwymiarowej, ale o odmiennym „foldzie”, czyli innym sposobie zwinięcia łańcucha białkowego.
Dotychczas stosowane metody przydzielałyby takie białka do osobnych grup. Tymczasem znane są przypadki, gdy tego typu cząsteczki pełnią podobne funkcje. I do wykrywania takich grup białek może się przydać BioS2Net – dodaje.
Jak mówi naukowiec, nowe białka odkrywa się cały czas. Zdecydowana większość z nich, jeśli już ma opisaną strukturę przestrzenną, jest deponowana w bazie danych Protein Data Bank, do której każdy ma dostęp przez Internet. Warto jednak zwrócić uwagę, że proces odkrywania nowych białek rozpoczyna się o wiele wcześniej, już na etapie sekwencjonowania genomu. W bazach danych genomów często można spotkać się z adnotacją ’hypothetical protein’ (pol. hipotetyczne białko). Istnieją algorytmy komputerowe, które na podstawie sekwencji nukleotydowych w zsekwencjonowanym genomie przewidują obszary przypominające geny, które potencjalnie kodują informację o białkach. I takich potencjalnych białek znamy bardzo wiele. Ich funkcje można częściowo przewidzieć na podstawie podobieństwa do cząsteczek już wcześniej opisanych, ale do pełnego poznania takiej roli i mechanizmu działania często jednak należy najpierw ustalić ich strukturę, co wymaga miesięcy lub lat eksperymentów – opowiada badacz z UW.
W przypadku białek podobna sekwencja aminokwasów z reguły przekłada się na podobną strukturę. Do niedawna był to wręcz dogmat w biologii strukturalnej. Dzisiaj jednak wiadomo – mówi dr Ishikawa – że wiele białek jest inherentnie nieustrukturyzowanych (IDP; ang. intrinsically disordered protein) albo przynajmniej zwiera w sobie tego typu rejony. Takie białka mogą przyjmować różne struktury w zależności od tego z jakimi innymi białkami w danym momencie oddziałują.
Dodatkowo bardzo istotny jest cały kontekst, w jakim białko ulega pofałdowaniu. Przykładowo, obecność tzw. białek opiekuńczych, czy nawet samo tempo syntetyzowania białka w komórce, może mieć niemały wpływ na ostateczny jego kształt, a zatem też na funkcje. Nie zmienia to jednak faktu, że cechą fundamentalną każdego białka jest jego sekwencja aminokwasowa – podkreśla.
A dlaczego w ogóle poznanie dokładnej budowy cząsteczki białka jest takie ważne? Autor publikacji wyjaśnia, że białka, realizując swoje zadania w komórce, zawsze przyjmują określoną strukturę. Np. jeśli chcemy zaprojektować nowy lek, który będzie oddziaływał z określonym białkiem, to fundamentalne znaczenie ma określenie struktury tego drugiego. W trakcie pandemii SARS-CoV-2 trzeba było np. określić strukturę wirusowego białka S (tzw. kolca) m.in. po to, aby można było zaproponować cząsteczkę swoiście z nim oddziałującą, a przez to zmniejszyć wydajność zakażania komórek człowieka – mówi. Podsumowując: badanie struktury białek ma ogromne znaczenie dla poznania ich funkcji i mechanizmu działania, a także innych cząsteczek z nimi oddziałujących.
Jeśli chodzi o sam BioS2Net, to najpierw należy ściągnąć z bazy danych i przetworzyć informacje o danym białku. Przetwarzanie służy temu, aby wszystkie cechy białka, takie jak współrzędne atomów, rodzaje aminokwasów, profil ewolucyjny itd., zamienić na liczby, które będą zrozumiałe dla komputera. Każdy pojedynczy atom cząsteczki jest opisywany przez kilkadziesiąt liczb, które wyrażają wspomniane cechy.
Następnie liczby te wprowadza się do sieci neuronowej, która analizuje każdy z atomów oraz ich najbliższych sąsiadów, biorąc pod uwagę zarówno ich ułożenie przestrzenne, jak i sekwencyjne. Kolejny etap to łączenie grup atomów w jeden „superatom”, który zawiera w sobie całą wyuczoną lokalną informację. Proces ten powtarza się do momentu aż ów „superatom” będzie zawierał zagregowane informacje o całym białku. To jest nasz kod kreskowy, który wykorzystujemy potem do klasyfikacji białka, używając standardowych sieci neuronowych – zaznacza dr Ishikawa.
Zapytany o dokładność nowego narzędzia biolog wyjaśnia, że jeśli chodzi o wytworzenie unikatowego wektora reprezentującego poszczególne białka, to BioS2Net robi to bezbłędnie, tzn. że każde białko jest reprezentowane w jedyny możliwy sposób i żadna inna cząsteczka nie będzie opisana w taki sam sposób.
Natomiast, gdy zastosowaliśmy BioS2Net do klasyfikacji białek, osiągnęliśmy wynik nawet 95,4 proc. trafności w porównaniu do obowiązującej klasyfikacji wg bazy danych. Oznacza to, że w ponad 95 przypadków na 100 BioS2Net był w stanie prawidłowo przyporządkować białko do danej grupy. Tutaj jednak warto wspomnieć, że ta obowiązująca klasyfikacja opiera się na podobieństwie sekwencji aminokwasowych i pomija informacje strukturalne – tłumaczy autor publikacji.
Naukowcy podkreślają, że poza głównym zastosowaniem, czyli klasyfikacją białek, BioS2Net będzie mógł służyć także do analizowania innych cząsteczek biologicznych, w tym RNA. Uważamy, że narzędzie można by też wykorzystywać do klasyfikacji zupełnie innych danych biologicznych, np. map chromosomów w jądrze komórkowym. Właściwie to nasza architektura może być przydatna wszędzie tam, gdzie jest zdefiniowana struktura i sekwencja – mówią.
Dr Ishikawa dodaje, że BioS2Net powstał w ramach pracy licencjackiej pierwszego autora (jego Alberta Roethla) wykonanej pod kierunkiem. Warto to podkreślić, bo to ważny sygnał, że licencjat niekoniecznie jest pracą dyplomową, którą po prostu trzeba zrobić, ale czymś, co ma potencjał naukowy i może zostać opublikowane w międzynarodowym czasopiśmie – zaznacza naukowiec.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W łódzkim Bionanoparku powstanie laboratorium firmy NapiFeryn Bio Tech. Będzie w nim produkowane białko z rzepaku, które może zrewolucjonizować i rynek spożywczy, i naszą dietę. W działającej już prototypowej linii produkcyjnej powstaje tygodniowo kilka kilogramów izolatu białkowego (>90% białka) i koncentratu białkowo-błonnikowego (ok. 30% białka). Oba te produkty mogą być stosowane jako dodatki do słodyczy, makaronów, sosów, napojów, pieczywa czy wegańskich zamienników mięsa.
Rzepak, w odróżnieniu od soi, uprawiany jest lokalnie – nie trzeba go importować ani zwiększać jego upraw, ponieważ w procesie pozyskiwania białka wykorzystuje się pozostałości po tłoczeniu oleju rzepakowego. Jest to alternatywne rozwiązanie dla białka zwierzęcego, przyjazne naturze – zostawia znacznie mniejszy ślad węglowy, stwierdziła Magdalena Kozłowska, prezes NapiFeryn BioTech. Białko z rzepaku ma doskonałe wartości odżywcze. Jest łatwo trawione i przyswajalne przez ludzki organizm.
Dotychczasową przeszkodą w stosowaniu go w przemyśle spożywczym był jego charakterystyczny, gorzki posmak. Technologia opatentowana przez nas całkowicie ten problem usuwa. Nasze białko jest nie tylko zdrowe, ale też smaczne, mówi Piotr Wnukowski, wiceprezes firmy.
Co prawda produkt jest testowany też przez firmę w eksperymentalnej kuchni, jednak NapiFeryn BioTech nie chce produkować żywności, ale licencjonować swój produkt koncernom spożywczym. Produkty zawierające białko rzepakowe mogą trafić do sklepów już w ciągu 2-3 lat.
Izolat z białka z rzepaku został uznany za produkt bezpieczny i jest dopuszczony przez UE do stosowania w przemyśle spożywczym.Obecnie firma przygotowuje się do zarejestrowania koncentratu błonnikowo-białkowego.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Uczeni z Uniwersytetów w Aberdeen i Leicester zidentyfikowali w mózgu obszar, który napędza zapotrzebowanie na pożywienie bogate w białko. Odkrycie może mieć znaczenie dla rozwoju personalizowanych terapii otyłości. Nie od dzisiaj bowiem wiadomo, że dieta niskobiałkowa jest powiązana z otyłością.
Naukowcy zauważyli, że gdy szczury trzymano na diecie niskobiałkowej, doszło do większej aktywizacji pola brzusznego nakrywki (VTA), czyli jądra limbicznego śródmózgowia, obszaru odpowiedzialnego za aktywne poszukiwanie jedzenia.
Z badań wynika, że gdy wcześniej ograniczy się dostarczanie protein, VTA staje się bardziej wrażliwe na proteiny niż na inne składniki odżywcze. To zaś sugeruje, że mózgi zwierząt działają tak, by upewnić się, że dostawy białka zostaną utrzymane na odpowiednim poziomie. Taka adaptacja jest zrozumiała, gdyż niedobór białka może mieć katastrofalne skutki zdrowotne. Ponadto wcześniejsze badania wiązały niski poziom białek z otyłością. Nie wiadomo było jednak, jak na zjawisko to wpływa mózg.
Współautor badań doktor Fabien Naneix mówi: Odkryliśmy, że zmniejszenie podaży białka zwiększyło preferencje ku żywności, w której jest więcej białka niż węglowodanów. Ta preferencja ku białkom jest powiązana z większą odpowiedzią VTA i gdy zwierzęta przestawia się z normalnej zbilansowanej diety na dietę niskobiałkową, dochodzi do indukowania preferencji ku białkom, jednak zmiany w VTA wymagają intensywnego procesu uczenia się.
Nasze badania są pierwszymi, łączącymi preferencje ku białkom ze specyficzną aktywnością mózgu. Wiemy,że VTA odgrywa kluczową rolę w procesach pobierania innych składników odżywczych. Teraz wykazaliśmy, że dotyczy to również białek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W lutym i marcu do amerykańskiego Fermilab dostarczono trzy zestawy miedzianych płyt, które natychmiast zostały zabrane do magazynu znajdującego się 100 metrów pod ziemią. Miedź wydobyto w Finlandii, walcowano w Niemczech i dostarczono do USA, a wszystko odbyło się w ciągu zaledwie 120 dni. Pośpiech był bardzo wskazany. Miedź posłuży do wykrywania ciemnej materii i musi być jak najbardziej czysta, a każdy dzień, jaki spędziła na powierzchni ziemi przyczyniał się do jej zanieczyszczenia.
Jak wyjaśnia Dan Bauer z Fermilab, powierzchnia Ziemi jest zalewana ciągłym deszczem promieni kosmicznych. Gdy pochodzące z kosmosu cząstki uderzają w atomy miedzi, wybijają z nich protony i neutrony. Powstaje kobalt-60. Jest on radioaktywny, a więc niestabilny, zatem spontanicznie rozpada się na inne cząstki. Dla codziennego użycia miedzi nie ma to żadnego znaczenia, jednak wspomniane płyty zostaną wykorzystane w eksperymencie o nazwie Super Cryogenic Dark Matter Search (SuperCDMS), więc Bauer i jego koledzy muszą być pewni, że miedź jest jak najbardziej czysta.
Eksperyment SuperCDMS będzie prowadzony w podziemnym laboratorium SNOLAB z Kanadzie. Z płyt powstanie sześć naczyń przypominających duże puszki na napoje. Będą one wchodziły jedna w drugą. Najbardziej wewnętrzne z naczyń będzie zawierało germanowe i krzemowe urządzenia, których zadaniem będzie wykrywanie WIMP-ów, czyli masywnych słabo reagujących cząstek. Naukowców szczególnie interesują WIMP o masie mniejszej niż 1/10 masy protonu.
Średnica najbardziej zewnętrznej „puszki” wyniesie nieco ponad 1 metr. Całość, zwana SNOBOX, będzie podłączona do specjalnego urządzenia, które schłodzi germanowe i krzemowe czujniki do ułamków stopnia powyżej zero absolutnego. W takich temperaturach drgania wywołane przepływem ciepła są tak minimalne, że urządzenia powinny zarejestrować drgania spowodowane uderzeniem WIMP-a w atom. Bauer mówi, że cały eksperyment jest poszukiwaniem igły w stogu siana. W najlepszym wypadku uda nam się zarejestrować może kilka WIMP rocznie.
Eksperyment prowadzony będzie dwa kilometry pod ziemią. Czujniki zostaną zamknięte we wspomnianych miedzianych puszkach, a całość będzie dodatkowo chroniona warstwami ołowiu, plastiku i wody. Wszystko po to, by powstrzymać wszelkie inne cząstki – z wyjątkiem WIMP – przed dotarciem do czujników. Jednak pomiędzy czujnikami a miedzią nie będzie żadnej bariery. Dlatego właśnie miedź musi być jak najczystsza. Wszystkie zanieczyszczenia mogą bowiem generować w czujnikach dodatkowe sygnały. Właśnie dlatego naukowcy starają się, by miedź jak najkrócej przebywała na powierzchni ziemi, żeby nie powstawał w niej kobalt-60.
Jednak kobalt nie nie jedyny problem. W skorupie ziemskiej występuje wiele radioaktywnych izotopów uranu, toru czy potasu. Zatem już samo źródło miedzi, kopalnia, musiało być jak najczystsze. Problemem mogą być też pierwiastki, które nie są radioaktywne. Wszelkie znajdujące się w miedzi zanieczyszczenia zmniejszają jej zdolność do odprowadzania ciepła, co utrudni utrzymanie odpowiednio niskiej temperatury czujników. Czystość SuperCDMS musi wynosić ponad 99,99%. Zanieczyszczenia radioaktywne zaś mogą stanowić tam mniej niż 0,1 części na miliard.
Mimo najlepszych starań fińskich i niemieckich specjalistów, nie wszystkie zanieczyszczenia można z miedzi wyeliminować. Chociażby dlatego, że do końca nie wiemy, jakie procesy zachodzą w miedzi podczas jej obróbki. Dlatego też, gdy płyty dotarły do Fermilab zostały pobrane z nich próbki, które trafiły do Pacific Northwest National Laboratory. Tam przeprowadzono testy, mające na celu dokładne opisanie pozostałych zanieczyszczeń.
Wkrótce płyty wyjadą z Fermilab do zakładu, gdzie powstaną z nich „puszki”. Znajdą się wówczas na powierzchni, więc „kobaltowy zegar” będzie tykał. Zatrzyma się dopiero gdy całość trafi do podziemnego laboratorium w Kanadzie.
Ostatnią czynnością, jaką wykonamy przed zabraniem ich pod ziemię będzie spryskanie ich kwasem, który usunie z nich kilkadziesiąt mikrometrów powierzchni, mówi Bauer. Kwas ten to mieszanina wody utlenionej i rozcieńczonego kwasu solnego. Następnie całość zostanie pokryta słabym roztworem kwasu cytrynowego, który będzie chronił „puszki” przed utlenianiem w czasie prowadzenia eksperymentu.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.