Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Jak samoloty wpływają na klimat
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Współczesne samoloty pasażerskie emitują mniej węgla niż starsze modele, jednak latają na większych wysokościach, przez co ich smugi kondensacyjne utrzymują się dłużej, a to może w większym stopniu wpływać na ocieplenie klimatu. Nowe badania, przeprowadzone przez naukowców z Wielkiej Brytanii, Niemiec i USA, wykazały również, że prywatne odrzutowce mają nawet większy negatywny wpływ na klimat, niż dotychczas sądzono.
Podczas podróży lotniczych do atmosfery emitowane są duże ilości węgla. I właśnie z tą emisją kojarzony jest negatywny wpływ lotów pasażerskich na klimat. Niewykluczone jednak, że to nie ona, a smugi kondensacyjne są głównym elementem, za pomocą którego samoloty przyczyniają się do ocieplania klimatu. Smugi kondensacyjne przyczyniają się do ponad połowy dodatniego wymuszenia radiacyjnego z lotnictwa, jednak rozmiary ich wpływu na klimat są wysoce niepewne. W dużym stopniu zależą bowiem od mikrofizycznych właściwości smugi oraz lokalnej meteorologii, ponadto silnie zmieniają się w czasie trwania smugi, piszą autorzy badań.
Naukowcy przeanalizowali zdjęcia satelitarne ponad 64 000 smug kondensacyjnych z samolotów przelatujących nad Oceanem Atlantyckim. Stwierdzili, że nowoczesne maszyny, które latają na wysokości około 12 kilometrów, tworzą bardziej trwałe smugi. Maszyny takie, by zaoszczędzić na paliwie, latają wyżej, gdzie powietrze jest bardziej rozrzedzone i stawia mniejszy opór. Starsze samoloty latają na wysokości około 11 kilometrów. Maszyny latające wyżej spalają mniej paliwa, powodują więc mniejszą emisję, jednak pozostawiane przez nich smugi kondensacyjne dłużej się utrzymują, więc dłużej generują efekt cieplarniany.
Nowsze samoloty latają coraz wyżej i wyżej, by zmniejszyć zużycie paliwa i emisję węgla. Niezamierzoną konsekwencją takich działań jest tworzenie większej liczby dłużej utrzymujących się w powietrzu smug kondensacyjnych, które zatrzymują w atmosferze dodatkowe ciepło, wyjaśnia główny autor badań, doktor Edward Gryspeerdt z Imperial College London. Badacze potwierdzili również, że istnieje prosty sposób na skrócenie czasu utrzymywania się smug kondensacyjnych. Jest nim zmniejszenie ilości sadzy emitowanej przez silniki, czyli dokładniejsze spalanie paliwa.
Nieproporcjonalnie dużym problemem są prywatne odrzutowce. Są co prawda mniejsze niż samoloty pasażerskie i zużywają mniej paliwa, jednak latają jeszcze wyżej. I mimo swoich rozmiarów generują długo utrzymujące się smugi kondensacyjne, które rozmiarami dorównują smugom z samolotów pasażerskich. Są też, oczywiście, mniej efektywne niż samoloty pasażerskie, emitując do atmosfery więcej węgla na osobę, niż duże maszyny należące do linii lotniczych. Negatywny wpływ na klimat milionerów posiadających prywatne odrzutowce jest więc jeszcze bardziej nieproporcjonalnie duży, niż się dotychczas wydawało.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zdaniem naukowców z University of Cambridge, wpływ wulkanów na klimat jest mocno niedoszacowany. Na przykład w najnowszym raporcie IPCC założono, że aktywność wulkaniczna w latach 2015–2100 będzie taka sama, jak w latach 1850–2014. Przewidywania dotyczące wpływu wulkanów na klimat opierają się głównie na badaniach rdzeni lodowych, ale niewielkie erupcje są zbyt małe, by pozostawiły ślad w rdzeniach lodowych, mówi doktorantka May Chim. Duże erupcje, których wpływ na klimat możemy śledzić właśnie w rdzeniach, mają miejsce najwyżej kilka razy w ciągu stulecia. Tymczasem do małych erupcji dochodzi bez przerwy, więc przewidywanie ich wpływu na podstawie rdzeni lodowych prowadzi do mocnego niedoszacowania.
Z badań przeprowadzonych przez Chim i jej zespół wynika, że modele klimatyczne nawet 4-krotnie niedoszacowują chłodzącego wpływu małych erupcji wulkanicznych. Podczas erupcji wulkany wyrzucają do atmosfery związki siarki, które gdy dostaną się do górnych jej partii, tworzą aerozole odbijające światło słoneczne z powrotem w przestrzeń kosmiczną. Gdy mamy do czynienia z tak dużą erupcją jak wybuch Mount Pinatubo w 1991 roku, emisja związków siarki jest tak duża, że spadają średnie temperatury na całym świecie. Takie erupcje zdarzają się rzadko. W porównaniu z gazami cieplarnianymi emitowanymi przez ludzi, wpływ wulkanów na klimat jest niewielki, jednak ważne jest, byśmy dokładnie uwzględnili je w modelach klimatycznych, by móc przewidzieć zmiany temperatur w przyszłości, mówi Chim.
Chim wraz z naukowcami z University of Exeter, Niemieckiej Agencji Kosmicznej, UK Met Office i innych instytucji opracowali 1000 różnych scenariuszy przyszłej aktywności wulkanicznej, a następnie sprawdzali, co przy każdym z nich będzie działo się z klimatem. Z analiz wynika, że wpływ wulkanów na temperatury, poziom oceanów i zasięg lodu pływającego jest prawdopodobnie niedoszacowany, gdyż nie bierze pod uwagę najbardziej prawdopodobnych poziomów aktywności wulkanicznej.
Analiza średniego scenariusza wykazała, że wpływ wulkanów na wymuszenie radiacyjne, czyli zmianę bilansu promieniowania w atmosferze związana z zaburzeniem w systemie klimatycznym, jest niedoszacowana nawet o 50%. Zauważyliśmy, że małe erupcje są odpowiedzialny za połowę wymuszenia radiacyjnego generowanego przez wulkany. Indywidualne erupcje tego typu mogą mieć niemal niezauważalny wpływ, ale ich wpływ łączny jest duży, dodaje Chim.
Oczywiście erupcje wulkaniczne nie uchronią nas przed ociepleniem. Aerozole wulkaniczne pozostają w górnych warstwach atomsfery przez rok czy dwa, natomiast dwutlenek węgla krąży w atmosferze znacznie dłużej. Nawet jeśli miałby miejsce okres wyjątkowo dużej aktywności wulkanicznej, nie powstrzyma to globalnego ocieplenia. To jak przepływająca chmura w gorący słoneczny dzień, jej wpływ chłodzący jest przejściowy, wyjaśnia uczona.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na łamach Nature opublikowano artykuł, którego autorzy wykazali istnienie związku pomiędzy ewolucją człowieka a naturalnymi zmianami klimatu powodowanymi przez zjawiska astronomiczne. Od dawna podejrzewano, że klimat miał wpływ na ewolucję rodzaju Homo, jednak związek ten trudno udowodnić, gdyż w pobliżu miejsc występowania ludzkich skamieniałości rzadko można znaleźć wystarczająco dużo danych, by opisać klimatu w czasie, gdy ludzie ci żyli.
Dlatego też naukowcy z Korei Południowej, Niemiec, Szwajcarii i Włoch wykorzystali model komputerowy opisujący klimat na Ziemi na przestrzeni ostatnich 2 milionów lat. To pozwoliło na określenie klimatu, jaki panował w miejscu i czasie, w którym żyli badani przez naukowców ludzi. W ten sposób opisano warunki klimatyczne preferowane przez poszczególne gatunki homininów. Stalo się to punktem wyjścia do stworzenia ewoluującej w czasie mapy z obszarami potencjalnie zamieszkanymi przez naszych przodków.
Nawet jeśli różne grupy archaicznych ludzi preferowały różny klimat, to wszystkie one reagowały na zmiany klimatu wywoływane takimi zjawiskami astronomicznymi jak zmiana nachylenia ekliptyki, ekscentryczność orbity czy precesję. Zmiany takie mają miejsce w okresach od 21 tysięcy do 400 tysięcy lat, mówi Axel Timmermann, główny autor badań i dyrektor Centrum Fizyki Klimatu na Uniwersytecie Narodowym Pusan w Korei Południowej.
Uczeni, żeby sprawdzić, czy związek pomiędzy zmianami klimatu a ewolucją rzeczywiście istnieje, powtórzyli swoją analizę, ale zmieniali dane dotyczące datowania poszczególnych skamieniałości, przypadkowo je między sobą podmieniając. Jeśli zmiany klimatu nie miały związku z ewolucją, to takie podmienienie danych nie powinno wpłynąć na wyniki analizy. Okazało się jednak, że wyniki analizy dla danych prawdziwych i przypadkowo wymieszanych zasadniczo się między sobą różniły. Wyraźnie widoczne były różnice we wzorcach wyboru habitatów przez Homo sapiens, Homo neanderthalensis i Homo haidelbergensis. Wyniki te pokazują, że co najmniej na przestrzeni ostatnich 500 000 lat zmiany klimatu, w tym okresy zlodowaceń, odgrywały kluczową rolę w wyborze habitatu przez te gatunki, co z kolei wpłynęło na miejsca znalezienia skamieniałości, mówi Timmermann.
Postanowiliśmy też poznać odpowiedź na pytanie, czy habitaty różnych gatunków człowieka nakładały się na siebie w czasie i przestrzeni, dodaje profesor Pasquale Raia z Università di Napoli Federico II w Neapolu. Na podstawie tak uzyskanych danych dotyczących nakładających się habitatów, zrekonstruowano drzewo ewolucyjne człowieka. Wynika z niego, że neandertalczycy i denisowianie wyodrębnili się z eurazjatyckiego kladu H. heidelbergensis około 500–400 tysięcy lat temu, a H. sapiens pochodzi z południowoafrykańskiej populacji H. heidelbergensis, od której oddzielił się około 300 tysięcy lat temu.
Nasza bazująca na klimacie rekonstrukcja drzewa ewolucyjnego człowieka jest więc dość podobna do rekonstrukcji wykonanej w ostatnim czasie na podstawie danych genetycznych lub danych morfologicznych. Dzięki temu możemy zaufać uzyskanym przez nas wynikom, cieszy się doktor Jiaoyan Ruan z Korei Południowej.
Niezwykłej rekonstrukcji dokonano za pomocą południowokoreańskiego superkomputera Aleph, który pracował nieprzerwanie przez 6 miesięcy, by stworzyć największą z dotychczasowych symulacji przeszłego klimatu. Model obejmuje aż 500 terabajtów danych. To pierwsza ciągła symulacja ziemskiego klimatu obejmująca ostatnie 2 miliony lat i uwzględniająca pojawiania się i znikanie pokryw lodowych czy zmiany w stężeniach gazów cieplarnianych. Dotychczas paleoantropolodzy nie używali tak rozległych modeli paleoklimatycznych. Nasza praca pokazuje, jak przydatne są to narzędzia, dodaje profesor Christoph Zollikofer z Uniwersytetu w Zurichu.
Uczeni mówią, ze w swoich danych zauważyli interesujący wzorzec dotyczący pożywienia. Wcześni afrykańscy hominini żyjący pomiędzy 2 a 1 milionem lat temu preferowali stabilne warunki klimatyczne, co ograniczało ich do wąskich habitatów. Przed około 800 tysiącami lat doszło do zmiany klimatu, w wyniku której grupa znana pod ogólnym terminem H. heidelbergensis dostosowała się do szerszego spektrum źródeł pożywienia, dzięki czemu mogli wędrować po całym globie, docierając do odległych regionów Europy i Azji, dodaje Elke Zeller z Korei. Nasze badania pokazują, że klimat odgrywał kluczową rolę w ewolucji rodzaju Homo. Jesteśmy, kim jesteśmy, gdyż przez wiele tysiącleci udało nam się dostosowywać do powolnych zmian klimatu, wyjaśnia profesor Timmermann.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Gdy piorun uderzy w samolot, pilot powinien jak najszybciej wylądować, by można było sprawdzić ewentualne uszkodzenia maszyny. Na pierwszym planie jest tutaj stawiane bezpieczeństwo, jednak bardzo często maszyna wychodzi z takiego zdarzenia bez szwanku, a cała procedura powoduje spore koszty i opóźnienia.
Najnowsze badania sugerują, że najlepszym sposobem na zmniejszenie ryzyka uderzenia pioruna w samolot może być... dodanie ładunku elektrycznego na jego powierzchni.
Podczas lotu na powierzchni samolotu gromadzą się dodanio lub ujemnie naładowane jony. Szczególnie dużo gromadzi się ich na dziobie, końcówkach skrzydeł i statecznika. Jeśli pojawi się duża różnica w ładunkach zanim samolot wleci w naładowany obszar atmosfery, jony mogą przepłynąć wzdłuż poczycia i zamknąć obwód z chmurami prowadząc do pojawienia się wyładowania.
W 2018 roku inżynier Carmen Guerra-Garcia z MIT i jej sudent Colin Pavan, przeprowadzili obliczenia, z których wynikało, że aby zapobiec takim wydarzeniom należy dodać do poszycia samolotu ujemne ładunki elektryczne. Teraz oboje przetestowali model samolotu z umieszczonym na pokładzie generatorem. Badali swój model w różnych warunkach, sprawdzając, jak rozkładają się ładunki elektryczne i co się z nimi dzieje.
Badania potwierdziły, że przepływ jonów prowadzi do zainicjowania wyładowań elektrycznych. Potwierdziły też, że dodanie ujemnych ładunków pomaga w uniknięciu takich zjawisk.
Naładowanie samolotu brzmi jak pomysł szaleńca, ale dodanie ładunków ujemnych zapobiega gromadzeniu się ładunków dodatnich, co z kolei może zapobiec pojawieniu się wyładowania, mówi inżynier Pavlo Kochkin z Uniwersytetu w Bergen. Od lat zajmuje się on problematyką wyładowań elektrycznych na powierzchni samolotów. Teraz, zainspirowany badaniami naukowców z MIT, tworzy specjalny symulator, w którym uwzględni różne poziomy naelektryzowania powietrza i zawartość pary wodnej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
BAE Systems wyprodukowało bezzałogowy ultralekki samolot (UAV), który może konkurować z satelitami czy dronami. PHASA-35 (Persistent High-Altitude Solar Aircraft) może pochwalić się skrzydłami o rozpiętości 35 metrów, a więc dorównującej rozpiętości skrzydeł Boeinga, ale waży przy tym 150 kg, w tym 15 kg stanowi ładunek. Samolot został po raz pierwszy oblatany 10 lutego na poligonie australijskich sił powietrznych Woomera.
Latał przez nieco mniej niż godzinę. To jednak wystarczyło do przetestowania jego aerodynamiki, autopilota i manewrowości. Wcześniej testowaliśmy te elementy na mniejszych modelach samolotu, więc większość problemów już poprawiliśmy,mówi Phil Varty z BAE Systems.
Prototyp pokryty jest ogniwami fotowoltaicznymi firmy MicroLink Devices. Ich producent twierdzi, że skuteczność konwersji paneli sięga 31%.
Na potrzeby testu tylko część skrzydeł pokryliśmy panelami. Urządzenia te o grubości kartki papieru generowały 4 kW. W ostatecznej wersji samolotu panele umieścimy na całej powierzchni skrzydeł i dostarczą one 12 kW, zapewnia Varty.
Energia słoneczna napędza dwa silniki elektryczne i zasila zestaw ponad 400 akumulatorów, które pozwalają samolotowi na lot w nocy. Jak mówi Varty, akumulatory – w przeciwieństwie do paneli słonecznych – nie są ostatnim krzykiem techniki. Firma postawiła na znane, niezbyt wydajne i tanie rozwiązanie, podobne do tego, jakie możemy spotkać w smartfonach. Chodzi o to, żeby łatwo można było wymienić akumulatory na nowe, gdy pojawi się lepsza sprawdzona wersja.
Przedstawiciele BAE Systems zauważają też, że pomimo tego, iż test samolotu był prowadzony latem w Australii, to pojazd zaprojektowano tak, by mógł latać podczas najmniej sprzyjającej pory roku – przesilenia zimowego. Dlatego też PHASA-35 może potencjalnie pozostawać w powietrzu nieprzerwanie przez cały rok. Będzie latał w stratosferze na wysokości około 20 kilometrów. Tam jest niewiele wiatru, nie chmur i turbulencji, mówi Varty.
Samolot może być sterowany z Ziemi. Jest też wyposażony w autopilota, któremu można wgrać wcześniej przygotowaną trasę. Urządzenie może pozostawać w określonym punkcie lub wykonywać złożone manewry. Można go wyposażyć w aparaty fotograficzne, czujniki i różnego rodzaju urządzenia śledzące. Dlatego też PHASA-35 w wielu zastosowaniach może zastąpić drony czy satelity.
Najlepsze wojskowe drony mogą pozostawać w powietrzu maksymalnie przez 3 doby. Z kolei satelity muszą utrzymać prędkość co najmniej 7 km/s, by pozostać na wyznaczonej orbicie. Samolot BAE Systems będzie mógł bez przerwy monitorować określone miejsce, a dzięki temu, że znajduje się niżej nad Ziemią, dostarczy dokładniejszych obrazów. Jednak jego przydatność i czas pozostawania w powietrzu będą w dużej mierze zależały od masy ładunku. Osobną kwestią jest odporność na awarie przez cały rok.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.