Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Prace austriackich naukowców mogą przyczynić się do powstania nowatorskiej architektury komputerów kwantowych. Zespół Rainera Blatta z Uniwersytetu w Inssbrucku zaprezentował kwantową antenę, która pozwala na wymianę kwantowej informacji pomiędzy dwiema oddzielonymi od siebie komórkami pamięci umieszczonymi na jednym układzie.

To właśnie w Innsbrucku stworzono przed sześciu laty pierwszy kwantowy bajt, złożony z ośmiu splątanych kubitów umieszczonych w elektromagnetycznej pułapce. Jednak, by zbudować praktyczny komputer kwantowy, który przeprowadza obliczenia, potrzebujemy większej liczby kwantowych bitów - stwierdził profesor Blatt, który wraz ze swoim zespołem był twórcą kwantowego bajta. W takich pułapkach nie możemy przechowywać dużej liczby jonów i jednocześnie ich kontrolować - dodał. Dlatego też potrzebne są małe kwantowe rejestry, które będą ze sobą połączone.

Austriacy wykorzystali teoretyczne prace Ignacio Ciraca i Petera Zollera. W oddalonych od siebie o 54 mikrometrów pułapkach uwięzili jony i stworzyli anteny przekazujące sygnały. Cząsteczki oscylują jak elektrony w polu anteny telewizyjnej i tworzą pole elektromagnetyczne. Jeśli jedna antena jest dostrojona do drugiej, końcówka odbiorcza przejmuje sygnały z końcówki nadawczej i dochodzi do sprzężenia - wyjaśnia uczony. Wymiana energii, która ma miejsce może służyć jako podstawa do obliczeń w komputerze kwantowym.

Profesor Blatt mówi, że zastosowano bardzo prostą architekturę. W dwóch małych pułapkach uwięziono jony wapnia. Gdy do elektrod pułapek podłączono napięcie, można było zsynchronizować oscylacje jonów, co doprowadziło do sprzężenia i wymiany energii. To jednocześnie pierwsza w historii demonstracja sprzężenia dwóch mechanicznych oscylacji na poziomie kwantowym. Co więcej okazało się, że im więcej jonów w każdej pułapce, tym silniejsze sprzężenie. Dodatkowe jony działają jak antena i pozwalają na zwiększenie odległości oraz prędkości transmisji - mówi Blatt. Nowa technika daje szansę na rozprzestrzenianie splątania. Jednocześnie pozwala na manipulowanie pojedynczymi komórkami - mówi. Jego zdaniem komputery kwantowe mogą bazować na układach scalonych zawierających liczne pułapki, w których będą znajdowały się jony komunikujące się ze sobą dzięki sprzężeniu elektromagnetycznemu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

— Co powie kwantowy komputer, jak już osiągnie osobliwość i stanie się świadomy?

— Qbito ergo sum!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Fizycy z Uniwersytetu Oksfordzkiego pobili światowy rekord w precyzji kontrolowania pojedynczego kubitu. Uzyskali odsetek błędów wynoszący zaledwie 0,000015%, co oznacza, że ich kubit może popełnić błąd raz na 6,7 milionów operacji. O ile wiemy to najbardziej precyzyjne operacje z udziałem kubitów, jakie kiedykolwiek wykonano. To ważny krok w kierunku budowy praktycznego komputera kwantowego, który zmierzy się z prawdziwymi problemami, mówi współautor badań, profesor David Lucas z Wydziału Fizyki Uniwersytetu Oksfordzkiego.
      Użyteczne obliczenia prowadzone za pomocą komputerów kwantowych będą wymagały prowadzenia milionów operacji przez wiele kubitów. To oznacza, że jeśli odsetek błędów będzie zbyt wysoki, obliczenia staną się nieużyteczne. Oczywiście istnieją metody korekcji błędów, ale ich zastosowanie będzie wymagało zaangażowania kolejnych kubitów. Opracowana w Oksfordzie nowa metoda zmniejsza liczbę błędów, zatem zmniejsza liczbę wymaganych kubitów, a to oznacza, że zmniejsza rozmiary i koszt budowy samego komputera kwantowego.
      Jeśli zmniejszymy liczbę błędów, możemy zmniejszyć moduł zajmujący się korektą błędów, a to będzie skutkowało mniejszym, tańszym, szybszym i bardziej wydajnym komputerem kwantowym. Ponadto techniki precyzyjnego kontrolowania pojedynczego kubity są przydatne w innych technologiach kwantowych, jak zegary czy czujniki kwantowe.
      Bezprecedensowy poziom kontroli i precyzji został uzyskany podczas pracy z uwięzionym jonem wapnia. Był on kontrolowany za pomocą mikrofal. Taka metoda zapewnia większą stabilność niż kontrola za pomocą laserów, jest też od nich tańsza, bardziej stabilna i łatwiej można ją zintegrować w układach scalonych. Co więcej, eksperymenty prowadzono w temperaturze pokojowej i bez użycia ochronnego pola magnetycznego, co znakomicie upraszcza wymagania techniczne stawiane przed komputerem wykorzystującym tę metodę.
      Mimo że osiągnięcie jest znaczące, przed ekspertami pracującymi nad komputerami kwantowymi wciąż stoją poważne wyzwania. Komputery kwantowe wymagają współpracy jedno- i dwukubitowych bramek logicznych. Obecnie odsetek błędów na dwukubitowych bramkach jest bardzo wysoki, wynosi około 1:2000. Zanim powstanie praktyczny komputer kwantowy trzeba będzie dokonać znaczącej redukcji tego odsetka.

      Źródło: Single-qubit gates with errors at the 10−7 level, https://journals.aps.org/prl/accepted/10.1103/42w2-6ccy

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z QuTech (Uniwersytet Techniczny w Delft), we współpracy z Fujitsu i firmą Element Six, zaprezentowali działający zestaw bramek kwantowych, w których prawdopodobieństwo wystąpienia błędu wynosi poniżej 0,1%. Mimo, że całość wymaga jeszcze wiele pracy, tak niskie prawdopodobieństwo pojawienia się błędu jest jednym z podstawowych warunków prowadzenia w przyszłości powszechnych obliczeń kwantowych na dużą skalę.
      Skomplikowane obliczenia kwantowe wykonywane są za pomocą dużego ciągu podstawowych operacji logicznych prowadzonych na bramkach. Wynik takich obliczeń będzie prawidłowy pod warunkiem, że na każdej z bramek pojawi się minimalna liczba błędów, z którymi będą mogły poradzić sobie algorytmy korekty błędów. Zwykle uznaje się, że błędy nie powinny pojawiać się w więcej niż 0,1% do 1% operacji. Tylko wówczas algorytmy korekty będą działały właściwie i otrzymamy prawidłowy wynik końcowy obliczeń.
      Inżynierowie z QuTech i ich koledzy pracują z procesorami kwantowymi, które w roli kubitów wykorzystują spiny w diamentach. Kubity te składają się z elektronu i spinu powiązanego z defektami struktury krystalicznej diamentu. Defektem takim może być miejsce, w którym atom azotu zastąpił atom węgla w diamencie. Procesory takie działają w temperaturze do 10 K i są dobrze chronione przed zakłóceniami. Współpracują też z fotonami, co pozwala na stosowanie metod przetwarzania rozproszonego.
      Podczas eksperymentów wykorzystano system dwóch kubitów, jednego ze spinu elektronu w centrum defektu sieci krystalicznej, drugiego ze spinu jądra atomu w centrum defektu. Każdy z rodzajów bramek w takim systemie działał z odsetkiem błędów poniżej 0,1%, a najlepsze bramki osiągały 0,001%
      Żeby zbudować tak precyzyjne bramki, musieliśmy usunąć źródła błędów. Pierwszym krokiem było wykorzystanie ultraczystych diamentów, które charakteryzuje niska koncentracja izotopów C-13, będących źródłem zakłóceń, wyjaśnia główny autor badań, Hans Bartling. Równie ważnym elementem było takie zaprojektowanie bramek, by odróżniały kubity od siebie i od szumów tła. W końcu zaś, konieczne było precyzyjne opisanie bramek i zoptymalizowanie ich działania. Naukowcy wykorzystali metodę zwaną gate set tomography, która pozwala na dokładny opis bramek i operacji logicznych w procesorach kwantowych. Uzyskanie pełnej i precyzyjnej informacji o błędach na bramkach było niezwykle ważne dla procesu usuwania niedoskonałości i optymalizowania parametrów bramek, dodaje Iwo Yun.
      To jednak dopiero jeden, chociaż niezmiernie ważny, krok w kierunku wiarygodnego uniwersalnego komputera kwantowego. Nasz eksperyment został przeprowadzony na dwukubitowym systemie i wykorzystaliśmy konkretny rodzaj defektów sieci krystalicznej. Największym wyzwaniem jest utrzymanie i poprawienie jakości bramek w momencie, gdy trafią one do układów scalonych ze zintegrowaną optyką oraz elektroniką i będą pracowały ze znacznie większą liczbą kubitów, wyjaśnia Tim Taminiau, który nadzorował prace badawcze.
      Bramki zostały szczegółowo opisane na łamach Physical Review Applied.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Wydziału Fizyki Uniwersytetu Oksfordzkiego wykonali ważny krok w kierunku praktycznego wykorzystania komputerów kwantowych. Jako pierwsi zaprezentowali kwantowe przetwarzanie rozproszone. Wykorzystali przy tym fotoniczny interfejs, za pomocą którego połączyli dwa procesory kwantowe w jeden w pełni działający komputer. Swoje osiągnięcie opisali na łamach Nature.
      W ten sposób zapoczątkowali rozwiązanie problemu skalowalności maszyn kwantowych. Dzięki temu można, przynajmniej teoretycznie, połączyć olbrzymią liczbę niewielkich urządzeń kwantowych, które działałyby jak jeden procesor operujący na milionach kubitów. Zaproponowana na Oksfordzie architektura składa się z niewielkich węzłów, z których każdy zawiera małą liczbę kubitów, na które składają się jony uwięzione w pułapkach. Połączone za pomocą światłowodów węzły można ze sobą splątać, co pozwala na przeprowadzanie obliczeń kwantowych, podczas których wykorzystuje się kwantową teleportację.
      Oczywiście już wcześniej różne zespoły naukowe potrafiły dokonać kwantowej teleportacji stanów. Wyjątkowym osiągnięciem uczonych z Oksfordu jest teleportacja bramek logicznych. Zdaniem badaczy, kładzie to podwaliny pod „kwantowy internet” przyszłości, w którym odległe procesory utworzą bezpieczną sieć komunikacyjną i obliczeniową.
      Autorzy dotychczasowych badań nad kwantową teleportacją skupiali się na teleportacji stanów kwantowych pomiędzy fizycznie oddalonymi systemami. My użyliśmy kwantowej teleportacji do przeprowadzenia interakcji pomiędzy takimi systemami. Precyzyjnie dostrajając takie interakcje możemy przeprowadzać operacje na bramkach logicznych pomiędzy kubitami znajdującymi się w oddalonych od siebie miejscach. To pozwala na połączenie różnych procesorów kwantowych w jeden komputer, mówi główny autor badań Dougal Main.
      Wykorzystana koncepcja jest podobna do architektury superkomputerów, w których poszczególne węzły obliczeniowe – de facto osobne komputery – są połączone tak, że działają jak jedna wielka maszyna. W ten sposób naukowcy ominęli problem upakowania coraz większej liczby kubitów w jednym komputerze, zachowując jednocześnie podatne na zakłócenia stany kwantowe, niezbędne do przeprowadzania operacji obliczeniowych. Taka architektura jest też elastyczna. Pozwala na podłączania i odłączanie poszczególnych elementów, bez zaburzania całości.
      Badacze przetestowali swój komputer za pomocą algorytmu Grovera. To kwantowy algorytm pozwalający na przeszukiwanie wielkich nieuporządkowanych zbiorów danych znacznie szybciej niż za pomocą klasycznych komputerów. Nasz eksperyment pokazuje, że obecna technologia pozwala na kwantowe przetwarzanie rozproszone. Skalowanie komputerów kwantowych to poważne wyzwanie technologiczne, które prawdopodobnie będzie wymagało nowych badań w dziedzinie fizyki i będzie wiązało się poważnymi pracami inżynieryjnymi w nadchodzących latach, dodaje profesor David Lucas z UK Quantum Computing and Simulation Lab.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mają rozwiązywać problemy, z którymi nie radzą sobie komputery klasyczne. Maszyny, które udało się zbudować, bazują zwykle na superpozycji stanów elektronicznych, na przykład na dwóch różnych ładunkach. Problem w tym, że kubity elektromagnetyczne szybko ulegają dekoherencji, tracą swój stan kwantowy. Wówczas superpozycja ulega zniszczeniu i nie mamy już do czynienia z kubitem. To obecnie znacząco ogranicza możliwości komputerów kwantowych. Wkrótce jednak może się to zmienić, gdyż naukowcy z Federalnego Instytutu Technologii w Zurychu stworzyli długo działający mechaniczny kubit.
      Szwajcarski kubit to miniaturowa wersja membrany instrumentu perkusyjnego. Zachowuje się ona w sposób podobny do kota Schrödingera – jednocześnie wibruje i nie wibruje. Jest więc w superpozycji. Wykorzystanie mechanicznego kubitu mogłoby doprowadzić do powstania mechanicznych komputerów kwantowych, zdolnych do przeprowadzania długotrwałych, złożonych obliczeń.
      Specjaliści, próbujący stworzyć mechaniczny kubit, mierzyli się z olbrzymim problemem związanym ze stanami energetycznymi. Standardowe kubity elektromagnetyczne zachowują się anharmonicznie, co oznacza, że pomiędzy ich stanami elektronicznymi istnienie nierównowaga energii i to właśnie czyni je użytecznymi kubitami. Z mechanicznymi rezonatorami, takimi jak wspomniana powyżej membrana, problem polega na tym, że są one harmoniczne. Poziomy energii pomiędzy wibracjami są równe, więc wykorzystanie ich jako kubitów jest niemożliwe. Zaproponowano więc rozwiązanie problemu, które miało polegać na połączeniu takiego mechanicznego oscylatora z najlepiej działającym elektromagnetycznym kubitem. Jednak czas działania takiej hybrydy uzależniony był od czasu dekoherencji kubita elektromagnetycznego. Całość nie sprawdzała się dobrze.
      Naukowcy z Zurychu wpadli więc na inny pomysł. Ich kubit składa się z elementu piezoelektrycznego umieszczonego na szafirowej płytce – to część mechaniczna – połączonego z szafirowym anharmonicznym elementem.
      Prototypowy układ osiąga czas koherencji rzędu 200 mikrosekund, działa więc 2-krotnie dłużej niż przeciętny kubit nadprzewodzący. Co prawda obecnie najlepsze kubity osiągają czas koherencji około 1 milisekundy, jest to więc około 5-krotnie dłużej niż mechaniczny kubit z Zurychu, ale mowa tutaj o wyjątkowych kubitach, nad którymi prace trwają od wielu lat.
      Szwajcarscy naukowcy zapewniają, że eksperymentując z różnymi materiałami i architekturami będą w stanie znacząco wydłużyć czas koherencji ich kubitu.
      Twórcy mechanicznego kubitu pracują teraz nad stworzeniem kwantowej bramki logicznej, odpowiednika bramek logicznych w tradycyjnych komputerach, za pomocą których przeprowadzane są obliczenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie.
      Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa.
      Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym.
      Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...