Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zabić bakterię jej własną bronią

Rekomendowane odpowiedzi

Naukowcom z Washington University udało się opisać mechanizm działania jednej z toksyn, wykorzystywanych przez bakterie do atakowania komórek. Bakterie są odporne na swoje własne tokyny, a ich szczegółowe poznanie daje nadzieję na wyprodukowanie leków, dzięki którym bakterie staną się wrażliwe na własną broń.

Uczeni rozszyfrowali strukturę toksyny i antytoksyny wykorzystywanych przez Streptococcus pyogenes. Gdyby nie antytoksyna, bakteria zabiłaby samą siebie - mówi doktor Craig L. Smith, autor badań.

U wspomnianej bakterii antytoksyna jest połączona z toksyną i staje się nieaktywna gdy dochodzi do zmiany jej kształtu. To pięta achillesowa bakterii, którą chcielibyśmy wykorzystać. Lek, który ustabilizowałby nieaktywną formę, uwolniłby toksynę wewnątrz bakterii - powiedział profesor Thomas E. Ellenberger.

Wykorzystywanej przez Streptococcus pyogens toksynie zwanej w skrócie SPN towarzyszy antytoksyna IFS, która chroni bakterię. Uczeni chcą znaleźć lek, który spowoduje, że IFS pozostanie nieaktywna w kontakcie z SPN i bakteria zginie od własnej toksyny.

Pomiędzy bakteriami a ich gospodarzami toczy się ciągła wojna. Wspomagamy system odpornościowy antybiotykami, ale jako że bakterie potrafią się na nie uodpornić, ciągle potrzebujemy nowych leków - stwierdza Smith. Parę toksyna-antytoksna wykorzystuje wiele bakterii, ale obecnie nie istnieją lekarstwa, których celem byłoby niszczenie mechanizmu chroniącego bakterię przed jej własnymi toksynami.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie, tak być nie może!

Bakterie są odporne na swoje własne tokyny

Tokyny to wiadomo, że do poprawki, ale niestety w tym wypadku w całym artykule nie chodzi "odporność", która została użyta dwukrotnie (jeszcze

bakterie potrafią się na nie uodpornić
).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Celowana terapia radionuklidowa (TRT – targeted radionuclide therapy) polega na podawaniu do krwi radiofarmaceutyków, które wędrują do komórek nowotworowych, a gdy znajdą się w guzie emitują cząstki alfa i beta, niszcząc tkankę nowotworową. Obecnie stosowane metody TRT zależą od obecności unikatowych receptorów na powierzchni komórek nowotworowych. Radiofarmaceutyki wiążą się z tymi właśnie receptorami.
      To z jednej strony zaleta, gdyż leki biorą na cel wyłącznie komórki nowotworowe, oszczędzając te zdrowe. Z drugiej strony wysoka heterogeniczność guza i zdolność komórek nowotworowych do szybkich mutacji powodują, że może dojść do zmiany receptorów, przez co TRT będzie nieskuteczna. Naukowcy z University of Cincinnati mają pomysł na rozwiązanie tego problemu i precyzyjne dostarczenie radionuklidów niezależnie od fenotypu receptorów komórek nowotworowych.
      Uczeni zmodyfikowali niepatogenną probiotyczną bakterię Escherichia coli Nissle (EcN) tak, by dochodziło na jej powierzchni do nadmiernej ekspresji receptora metali. Bakteria, które może zostać dostarczona bezpośrednio do guza, przyciąga następnie specyficzny dla siebie radiofarmaceutyk zawierający specjalny kompleks organiczny z terapeutycznym radioizotopem 67Cu.
      Tak długo, jak te zmodyfikowane bakterie pozostają w guzie, trafi do niego też radioaktywny metal. Niezależnie od tego, czy na powierzchni komórek nowotworowych znajdzie się receptor czy też nie, mówi główny autor badań, Nalinikanth Kotagiri. Co więcej, możliwe jest zastąpienie izotopu 67Cu przez 64Cu, dzięki czemu można dokładnie obrazować położenie bakterii wewnątrz guza metodą pozytonowej tomografii emisyjnej. Możemy bez problemu przełączać się między 64Cu a 67Cu by obrazować guza i gdy już to zrobimy, możemy wprowadzić kolejną molekułę w celu przeprowadzenia leczenia, zapewnia Kotagiri.
      Szczegóły badań zostały opisane na łamach Advanced Healthcare Materials.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mutacje prowadzące do rozwoju nowotworów mogą być wywołane obecnością bakterii powszechnie występującej w naszych jelitach. Naukowcy z Hubrecht Institute i Princess Maxima Center w Utrechcie przeprowadzili eksperymenty laboratoryjne podczas których modelowe ludzkie jelita poddali działaniu jednego ze szczepów E. coli. Okazało się, że obecność bakterii wywoływała pronowotworowe zmiany w DNA. Takie same zmiany odkryto w DNA osób cierpiących na raka jelita grubego.
      To pierwsze badania, podczas których wykazano istnienie bezpośredniego związku pomiędzy obecnością bakterii zamieszkujących nasze ciało a pojawieniem się zmian genetycznych prowadzących do nowotworu.
      Jednym z gatunków bakterii, które mogą być dla nas szkodliwe, jest E. coli. Okazuje się, że jeden z jej szczepów jest „genotoksyczny”. Szczep ten wydziela związek chemiczny o nazwie kolibaktyna, który może uszkadzać DNA komórek naszego organizmu. Od dawna podejrzewano, że genotoksyczne E. coli, obecne u 20% dorosłych, może przyczyniać się do rozwoju nowotworów.
      Okazuje się, że te genotoksyczne E. coli można... kupić w sklepie. Na rynku obecne są probiotyki zawierające ten genotoksyczny szczep E. coli. Niektóre z tych probiotyków są nawet używane podczas testów klinicznych. Należy jeszcze raz dokładnie przebadać ten szczep. Mimo, że może on przynosić pewne krótkoterminowe korzyści, to probiotyki te mogą doprowadzić do rozwoju nowotworu dziesiątki lat po ich zażyciu, mówi Hans Clevers z Hubrecht Institute.
      Dotychczas nie było wiadomo, czy bakterie obecne w jelitach mogą prowadzić do kancerogennych mutacji w DNA. Holenderscy uczeni wykorzystali organoidy jelitowe. Organoidy to komórki hodowane w specjalnych trójwymiarowych środowiskach, tworzące miniaturowa narządy będące uproszczonymi modelami prawdziwych narządów w organizmie.
      Organoidy te zostały podane działaniu genotoksycznego szczepu E. coli. Po pięciu miesiącach naukowcy przeanalizowali DNA komórek organoidów i zbadali mutacje spowodowane przez bakterie.
      Uczeni stwierdzili, że genotoksyczna E. coli wywołuje dwa jednocześnie występujące rodzaje mutacji. Jedną z nich była zamiana adeniny (A) w którąkolwiek inną zasadę z DNA, a drugą była utrata pojedynczej adeniny z długiego łańcucha adenin. Jednocześnie, w obu mutacjach adenina pojawiała się po przeciwnej stronie podwójnej helisy, w odległości 3–4 par zasad od zmutowanego miejsca.
      Holendrzy odkryli też mechanizm działania kolibaktyny. Okazało się, że związek ten ma zdolność do przyłączania dwóch adenin w tym samym czasie i ich wzajemnego sieciowania (cross-link). To było jak ułożenie puzzli do końca. Wzorzec mutacji, jaki obserwowaliśmy podczas naszych badań można dobrze wyjaśnić strukturą chemiczną kolibaktyny, stwierdza Cayetano Pleguezuelos-Manzano.
      Gdy już poznali sposób działania kolibaktyny, postanowili sprawdzić, czy ślady tego oddziaływania można znaleźć u pacjentów. Naukowcy przeanalizowali mutacje w ponad 5000 guzach nowotworowych reprezentujących różne rodzaje nowotworów. Okazało się, że jeden rodzaj nowotworu zdecydowanie się tutaj wyróżnia. W ponad 5% guzów raka jelita grubego było widać wyraźne ślady takiej właśnie mutacji, podczas gdy w innych rodzajach nowotworów były one obecne w mniej niż 0,1% guzów, mówi Jens Puschhof. Ślady takie znaleziono w przypadku takich nowotworów jak nowotwory jamy ustnej czy pęcherza. Wiadomo, że E. coli może infekować te organy. Chcemy zbadać, czy genotoksyczność tej bakterii może wpływać na rozwój nowotworów poza jelitem grubym.
      Badania te mają olbrzymie znaczenie dla zapobiegania nowotworom. Niewykluczone, że w przyszłości badanie na obecność genotoksycznych E. coli stanie się jedną z metod identyfikowania grup podwyższonego ryzyka, że uda się wyeliminować z jelit szkodliwy szczep E. coli, czy też, że pozwoli to na bardzo wczesną identyfikację choroby.
      Badania opisano na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wyścig pomiędzy dwoinką rzeżączki a ludzkością dobiega końca. Bakteria powodująca jedną z najpowszechniejszych chorób przenoszonych drogą płciową wygrywa ze współczesną nauką.
      Najnowsze badania wykazują, że dwoinka staje się oporna na wszystkie metody kuracji antybiotykowej. Przed kilku laty uczeni zauważyli, że niektóre przypadki rzeżączki niemal nie reagują na leczenie cefalosporynami. Według artykułu opublikowanego w New England Journal of Medicine, liczba opornych na leczenie przypadków zachorowań jest już tak duża, że wkrótce rzeżączka stanie się chorobą nieuleczalną.
      To już kolejny mikroorganizm, który w ostatnim czasie zyskał oporność na zwalczające go środki stosowane przez człowieka. W ubiegłym miesiącu poinformowano o znalezieniu E-coli zawierającej geny oporności na leki. W Indiach odkryto bardzo oporne na leczenie przypadki gruźlicy, a nowojorskie szpitale nie mogą poradzić sobie ze śmiertelnym zapaleniem płuc, które nie reaguje na leczenie potężnymi, stosowanymi w ostateczności antybiotykami z grupy karbapenemów.
    • przez KopalniaWiedzy.pl
      Helicobacter pylori to jedyne bakterie, które są w stanie przeżyć w ludzkim żołądku. Zakażenie zwiększa ryzyko raka żołądka. Naukowcom dopiero teraz udało się jednak opisać, w jaki sposób bakteryjne toksyny zaburzają pracę mitochondriów i prowadzą do wzmożonej apoptozy.
      Jak wyjaśnia prof. Steven Blanke z University of Illinois, jedną z oznak przewlekłego zakażenia H. pylori jest nasilenie apoptozy. Może się to przyczyniać do rozwoju raka na kilka sposobów. Po pierwsze, apoptoza uszkadza nabłonek błony śluzowej żołądka, a chroniczne uszkodzenie jakiejkolwiek tkanki stanowi czynnik ryzyka nowotworu. Po drugie, zwiększenie liczby apoptycznych komórek może napędzać hipernamnażanie komórek macierzystych, które mają naprawiać szkody. Zwiększa to prawdopodobieństwo mutacji i nowotworu.
      Wcześniejsze studia pokazały, że VacA, białkowa toksyna wytwarzana przez H. pylori, uruchamia apoptozę. Nie było jednak wiadomo, jaki mechanizm leży u podłoża tego zjawiska. Naukowcy ustalili tylko, że VacA obiera na cel mitochondria. By zrozumieć, co dzieje się podczas ataku bakterii na żołądek, trzeba pamiętać, że zaspokajając potrzeby energetyczne, w zdrowej komórce mitochondria zlewają się i tworzą wydajne sieci i że nie są one tylko centrami energetycznymi, ponieważ regulują także śmierć komórkową.
      Badając, jak komórki reagują na zakażenie H. pylori, Amerykanie zauważyli, że bakterie wywołują rozszczepianie mitochondriów. Fuzja i rozszczepianie to 2 dynamiczne, przeciwstawne procesy, które muszą pozostawać w równowadze, by regulować strukturę i funkcjonowanie mitochondriów. Infekcja H. pylori lub podanie samej VacA daje jednak przewagę rozszczepowi.
      Zespół Blanke'a odkrył, że VacA przyciąga do mitochondriów białko gospodarza Drp1. Kolejne eksperymenty pokazały, że związany z Drp1 rozpad sieci mitochondrialnych prowadził do aktywacji stymulującej apoptozę proteiny Bax.
      Związek między działaniem VacA na mitochondria i zależną od Bax śmiercią komórkową nie był wcześniej znany - podkreśla Blanke.
      Dysfunkcje mitochondrialne wiążą się z wieloma chorobami: od nowotworów po choroby neurodegeneracyjne, takie jak parkinsonizm czy alzheimeryzm. Dotąd, mimo że wiedziano, że kilkadziesiąt bakterii i wirusów bezpośrednio atakuje mitochondria, nie dysponowano jednak metodologią badania potencjalnego związku między infekcjami bakteryjnymi a chorobami mitochondrialnymi. Dzięki pracom zespołu Blanke'a zyskano potrzebne do tego narzędzie.
    • przez KopalniaWiedzy.pl
      Już za dwa lata mogą rozpocząć się testy kliniczne bakterii, która pozwala na precyzyjne niszczenie guzów nowotworowych. Takie informacje przekazano podczas Society for General Microbiology's Autumn Conference.
      Wspomniana bakteria to Clostridium sporogenes, mikroorganizm powszechnie występujący w glebie. Spory bakterii wstrzykiwane są do ciała pacjenta i rozwijają się tylko i wyłącznie w guzach, gdzie bakteria produkuje specyficzny enzym. Osobno wstrzykiwane jest nieaktywne lekarstwo antynowotworowe. Gdy lekarstwo trafia do guza zostaje aktywowane przez bakteryjny enzym i niszczy tylko komórki w swoim bezpośrednim sąsiedztwie.
      Nowa terapia to dzieło naukowców uniwersytetów w Nottingham i Maastricht, którzy właśnie pokonali ostatnią przeszkodę na drodze ku rozpoczęciu testów klinicznych. Udało im się dokonać takiej modyfikacji C. sporogenes, że bakteria produkuje znacznie więcej enzymu niż poprzednio, dzięki czemu skuteczniej przyczynia się do aktywizacji leku.
      Profesor Nigel Minton, który kieruje badaniami, wyjaśnia, w jaki sposób nowa terapia niszczy komórki nowotworowe nie szkodząc zdrowym tkankom. Clostridia to stara grupa bakterii, która powstała zanim jeszcze atmosfera była bogata w tlen. Bakterie te żyją tam, gdzie tlenu jest mało. Gdy do organizmu pacjenta wprowadzamy spory Clostridii, mogą się one rozwinąć tylko w warunkach beztlenowych, czyli np. w centrum guzów nowotworowych. To całkowicie naturalne zjawisko, które nie wymaga większych zmian bakterii i pozwala na precyzyjne działanie. Możemy je wykorzystać do zabicia komórek nowotworowych przy jednoczesnym oszczędzeniu zdrowych tkanek.
      Uczony dodaje, że ta terapia zabija wszystkie typy nowotworów. Jest lepsza od chirurgii, szczególnie tam, gdzie operacja wiąże się z wysokim ryzykiem lub lokalizacja guza uniemożliwia dostęp do niego.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...