Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Zaledwie przed trzema miesięcami informowaliśmy o odkryciu najodleglejszego obiektu we wszechświecie, a już dowiadujemy się, że teleskop Hubble'a zajrzał jeszcze głębiej w kosmos. Tym razem zauważono niewielką galaktykę, UDFj-39546284, znajdującą się w odległości 13,2 miliarda lat świetlnych od Ziemi. Poprzedni rekord został pobity o około 150 milionów lat. Nowo odkryta galaktyka jest około stukrotnie mniejsza od Drogi Mlecznej i została stworzona przez gwiazdy, które powstały zaledwie 480 milionów lat po Wielkim Wybuchu.

Odnalezienie tej galaktyki bardzo nas ucieszyło, a jednocześnie jesteśmy zdziwieni, że odkryliśmy tylko jeden tak wiekowy obiekt. To wskazuje, że wszechświat w swoich początkach przechodził szybkie zmiany - mówi Ivo Labbe, jeden z autorów odkrycia.

Dotychczas znamy 47 galaktyk, które pochodzą z czasów, gdy wszechświat liczył sobie około 650 milionów lat. To wskazuje, że pomiędzy 480 a 650 milionami lat po Wielkim Wybuchu doszło do wielokrotnego przyspieszenia tempa powstawania gwiazd.

Odkryta galaktyka znajduje się na granicy obecnych możliwości obserwacyjnych Teleskopu Hubble'a. Jednocześnie pokazuje, jak bardzo urządzenie to zmieniło naukę.

Zanim Teleskop trafił na orbitę byliśmy w stanie obserwować obiekty, których przesunięcie ku czerwieni wynosiło z=1, a powstały one 6 miliardów lat po Wielkim Wybuchu. Przesunięcie ku czerwieni to zjawisko przesuwania się długości obserwowalnych fal elektromagnetycznych w kierunku czerwieni. Im dalej leży obiekt, tym większe jest jego przesunięcie ku czerwieni. Już w roku 1995 dzięki urządzeniu Hubble Deep Field możliwości obserwacyjne ludzkości zwiększyły się do z=4. W roku 2002 astronauci zamontowali na Hubble'u urządzenia Advanced Camera i Hubble Ultra Deep Field zwiększając wartość "z" do 6. Gdy zamontowano pierwszą kamerę działającą na podczerwień - Near Infrared Camera, oraz Multi Object Spectrometer, "z" wzrosła do 7. Obecnie, po kolejnych udoskonaleniach możliwości obserwacyjne Hubble'a wynoszą z=10, co pozwala na zauważenie obiektów powstałych zaledwie 500 milionów lat po Wielkim Wybuchu.

Budowany właśnie przez NASA następca Hubble'a czyli James Webb Space Telescope pozwoli nam zobaczyć obiekty o z=15 i, prawdopodobnie, jeszcze starsze.

Astronomowie mają nadzieję, że dzięki temu ujrzymy pierwsze gwiazdy, które mogły powstać w 100-250 milionów lat po Wielkim Wybuchu, a zatem ich wartość "z" wynosi od 15 do 30.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Przesunięcie ku czerwieni to zjawisko przesuwania się długości obserwowalnych fal elektromagnetycznych w kierunku czerwieni. Im dalej leży obiekt, tym większe jest jego przesunięcie ku czerwieni.

A to jakaś nowa właściwość? Jak to się ma do Dopplera?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A to jakaś nowa właściwość? Jak to się ma do Dopplera?

 

Na początku Wszechświat rozszerzał się szybciej niż obecnie (stopniowo zwalnia) - im dalej leży obserwowany obiekt, tym jest starszy, bo jego obraz potrzebuje więcej czasu, by do nas dotrzeć - starsze obiekty oddalają się od nas szybciej niż młodsze - dlatego im starsza galaktyka, tym bardziej jej widmo jest przesunięte ku czerwieni (100% Dopplera).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
13,2 miliarda lat świetlnych od Ziemi[/size] 

Z moich danych wynika ze od 8mld lat juz jej tam nie ma i nigdy nie było poniewaz jest to obraz po wielu ugięciach wokół wielkich mas innych galaktyk.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Teleskop Webba dostarczył wielu wyjątkowych informacji, które pozwalają lepiej zrozumieć wszechświat. Były wśród nich i takie, które spowodowały, że zaczęto mówić o kryzysie w kosmologii i konieczności rewizji modeli. Jak bowiem stwierdzono, we wczesnym wszechświecie istniały galaktyki znacznie bardziej masywne, niż wynika to z obecnie stosowanych modeli. Tak masywne galaktyki nie powinny pojawić się tak krótko po Wielkim Wybuchu. Autorzy najnowszej pracy twierdzą jednak, że – przynajmniej niektóre z nich – są znacznie mniej masywne, niż się wydawało.
      Autorką najnowszych badań jest Katherine Chworowsky i jej zespół z University of Texas w Austin. Jak zauważyli badacze, galaktyki położone dalej, a więc starsze, wciąż były mniejsze od tych, położonych bliżej. Wszystko się więc zgadzało. To była wskazówka, że warto przyjrzeć się bliżej temu zjawisku.
      Naukowcy wykonali więc szczegółową analizę danych z Webba zebranych w ramach projektu Cosmic Evolution Early Release Science (CEERS) i znaleźli w nich sygnały świadczące o istnieniu szybko przemieszczającego się wodoru. Wszystko więc wskazuje na to, że galaktyki, które wydają się zbyt masywne, jak na swój wiek, zawierają czarne dziury, które w bardzo szybkim tempie wchłaniają otaczający je gaz. Ten szybko poruszający się gaz emituje tak dużo światła, że wydaje się, iż galaktyki zawierają znacznie więcej gwiazd, niż w rzeczywistości. A więc, że są znacznie bardziej masywne. Gdy badacze usunęli te „podejrzane” galaktyki z analizy, okazało się, ze cała reszta starych galaktyk mieści się w ramach przewidzianych obecnymi modelami. Tak więc standardowy model kosmologiczny nie przeżywa kryzysu. Za każdym razem, gdy mamy teorię, która tak długo wytrzymała próbę czasu, potrzebujemy przytłaczających dowodów, by ją obalić. A tak nie jest w tym przypadku, mówi profesor Steven Finkelstein, którego badania w ramach projektu CEERS dostarczyły dowodów wykorzystanych przez zespół Chworowsky.
      O ile więc naukowcom udało się rozwiązać główny problem dotyczący zbyt dużej masy galaktyk we wczesnym wszechświecie, nierozwiązana pozostała jeszcze jedna zagadka. W danych Webba widzimy bowiem niemal dwukrotnie więcej masywnych starych galaktyk, niż wynika to z modelu kosmologicznego. Może we wczesnym wszechświecie galaktyki bardziej efektywnie zmieniały gaz w gwiazdy, zastanawia się Chworowsky.
      Gwiazdy powstają, gdy gaz schłodzi się na tyle, że zapada się pod wpływem grawitacji. Dochodzi wówczas do jego kondensacji w gwiazdę. Jednak w miarę kurczenia się obłoku gazu, jego temperatura wzrasta i pojawia się ciśnienie skierowane na zewnątrz. W naszym kosmicznym sąsiedztwie istnieje równowaga obu tych sił - skierowanego do wewnątrz ciśnienia chłodnego gazu i skierowanego na zewnątrz ciśnienia zapadającej się gwiazdy, przez co gwiazdy tworzą się bardzo powoli. Być może jednak we wczesnym wszechświecie, który był bardziej gęsty od obecnego, ciśnienie skierowane na zewnątrz napotykało większy opór, więc gwiazdy tworzyły się szybciej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie z Indii i Kanady zarejestrowali emisję radiową w paśmie 21 cm pochodzącą z wyjątkowo odległej galaktyki. Ich osiągnięcie otwiera drogę do lepszego poznania wszechświata, szczególnie jego odległych części. Daje ono np. nadzieję na znalezienie odpowiedzi na pytanie, w jaki sposób w odległych galaktykach powstają gwiazdy. Galaktyki emitują różne rodzaje sygnałów radiowych. Dotychczas mogliśmy rejestrować ten konkretny sygnał tylko z bliższych galaktyk, co ograniczało naszą wiedzę, mówi Arnab Chakraborty, doktorant na kanadyjskim McGill University.
      Emisja w paśmie 21 centymetrów pochodzi z atomów wodoru, który szczególnie interesuje naukowców. Atomowy wodór to podstawowy budulec gwiazd, ma też olbrzymi wpływ na ewolucję galaktyk. Zatem, by lepiej zrozumieć ewolucję wszechświata, naukowcy chcą zrozumieć ewolucję gazu w różnych punktach jego historii. A dzięki indyjskiemu Giant Metrewave Radio Telescope oraz wykorzystaniu techniki soczewkowania grawitacyjnego udało się zarejestrować emisję z atomów wodoru znajdujących się w bardzo odległej galaktyce.
      Dotychczas najbardziej odległą galaktyką, dla której zarejestrowano emisję w paśmie 21 cm, był obiekt oddalony od nas o 4,1 miliarda lat. Przesunięcie ku czerwieni tej galaktyki wynosiło z=0.376. Przesunięcie ku czerwieni to zjawisko polegające na wydłużaniu się fali promieniowania elektromagnetycznego w miarę oddalania się źródła emisji od obserwatora. W przypadku światła widzialnego falami o największej długości są fale barwy czerwonej, stąd nazwa zjawiska. Kanadyjsko-indyjski zespół zarejestrował teraz emisję z galaktyki, dla której z wynosi 1.29, co oznacza, że jest ona oddalona od nas o 8,8 miliarda lat świetlnych. Przechwycony sygnał został z niej wyemitowany, gdy wszechświat liczył sobie zaledwie 4,9 miliarda lat. Ze względu na gigantyczną odległość, do chwili, gdy przechwyciliśmy sygnał, emisja z pasma 21 cm przesunęła się do pasma 48 cm, mówi Chakraborty.
      Zarejestrowanie tak słabego sygnału z tak wielkiej odległości było możliwe dzięki zjawisku soczewkowania grawitacyjnego, w wyniku którego fale emitowane ze źródła są zaginane jak w soczewce przez obecność dużej masy – na przykład galaktyki – pomiędzy źródłem a obserwatorem. W tym przypadku soczewkowanie wzmocniło sygnał 30-krotnie, dzięki czemu mogliśmy zajrzeć tak głęboko w przestrzeń kosmiczną, wyjaśnia profesor Nirupam Roy. Badania wykazały, że masa wodoru atomowego w obserwowanej galaktyce jest niemal dwukrotnie większa niż masa gwiazd.
      Uzyskane wyniki dowodzą, że już za pomocą obecnie dostępnych technologii jesteśmy w stanie coraz bardziej szczegółowo badać coraz odleglejsze obszary wszechświata i śledzić jego ewolucję.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa astronomów informuje o prawdopodobnym odkryciu pozostałości pierwszych gwiazd, jakie uformowały się po Wielkim Wybuchu. Uczeni wykorzystali innowacyjną metodę analizy odległego kwazaru, który badali za pomocą teleskopu Gemini North na Hawajach. Zauważyli niezwykłe proporcje pierwiastków, które – ich zdaniem – mogą pochodzić wyłącznie pozostałości po eksplozji gwiazd III populacji o masie 300-krotnie większej od masy Słońca.
      Według obecnie obowiązujących poglądów, najstarsza generacja gwiazd, gwiazdy III populacji, mogła tworzyć się już około 100 milionów lat po powstaniu wszechświata. Były to bardzo masywne gwiazdy, które szybko ewoluowały i szybko kończyły życie. Uważa się, że były one zbudowane z wodoru i helu z niewielką domieszką litu. Silne promieniowanie ultrafioletowe emitowane przez te gwiazdy miało spowodować takie zmiany w obłokach wodoru wypełniających wszechświat, że uniemożliwiło to ciągłe powstawanie gwiazd tej populacji. Z kolei eksplozje tych gwiazd wzbogaciły wszechświat w cięższe pierwiastki, przyczyniając się do powstania gwiazd II populacji.
      Naukowcy od dziesięcioleci poszukiwali śladów gwiazd III populacji, ale dotychczas nie udało się ich znaleźć. Aż do teraz.
      Japońsko-amerykański zespół analizował jeden z najbardziej odległych znanych nam kwazarów – ULAS J1342+0928 – i zauważył, że stosunek żelaza do magnezu w otaczających go chmurach jest ponad 10-krotnie większy niż w Słońcu. Zdaniem uczonych najbardziej prawdopodobnym wyjaśnieniem tego fenomenu jest eksplozja gwiazdy III populacji, która wybuchła jako supernowa z niestabilności kreacji par. Dotychczas nie znamy żadnego nie budzącego wątpliwości przykładu takiej supernowej. Wiemy jednak, że mogą one powstawać w wyniku eksplozji gwiazdy o niskiej metaliczności i masie od 150 do 250 mas Słońca. Gwiazdy III populacji spełniają oba te warunki.
      Supernowa z niestabilności kreacji par – w przeciwieństwie do innych typów supernowych – nie pozostawiają po sobie czarnej dziury czy gwiazdy neutronowej. Cała ich materia jest rozrzucana. Istnieją więc dwa sposoby, by dostrzec taką supernową. Pierwszy to zarejestrowanie momentu eksplozji. Drugi zaś to zidentyfikowanie w przestrzeni kosmicznej chemicznej sygnatury rozrzuconej przez nią materii.
      Gemini to jeden z niewielu teleskopów, pozwalających na przeprowadzenie tego typu badań. Jest on wyposażony w Gemini Near-Infrared Spectrograph (GNIRS), który rozdziela światło na fale składowe, a z nich można wnioskować o pierwiastkach wchodzących w skład badanego obiektu. Jednak wnioskowanie na tej podstawie o ilości danego pierwiastka jest trudne, gdyż jasność poszczególnych linii spektrum światła zależy od wielu czynników, nie tylko od ilości pierwiastków.
      Dwóch autorów badań, Yuzuru Yoshii oraz Hiroaki Sameshima z Uniwersytetu Tokijskiego opracowało więc nową metodę oceny ilości pierwiastków. Pokazała ona, że w badanym materiale jest zadziwiająco mało magnezu w stosunku do żelaza.
      Stało się dla mnie oczywiste, że widzimy tutaj pozostałości po supernowej z niestabilności kreacji par gwiazdy III populacji, mówi Yoshii. Autorzy badań mówią, że ich odkrycie, dzięki wyjątkowemu stosunkowi ilości magnezu do żelaza, jest najsilniejszym z dotychczasowych dowodów na znalezienie pozostałości po supernowej z niestabilności kreacji par. Obecnie za najsilniejszy uznaje się dowód z badań przeprowadzonych w 2014 roku.
      Jeśli rzeczywiście japońsko-amerykański zespół znalazł pozostałości gwiazdy III populacji, pozwoli nam to lepiej zrozumieć ewolucję wszechświata, powstawanie kolejnych populacji gwiazd czy pojawienie się życia. Teraz, gdy wiadomo czego i w jaki sposób szukać, odnalezienie kolejnych podobnych pozostałości powinno być łatwiejsze.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Kopenhadze, badając populacje gwiazd poza Drogą Mleczną, dokonali odkrycia, które może zmienić nasze rozumienie wielu procesów astronomicznych, w tym tworzenia się czarnych dziur, powstawania supernowych oraz tego, dlaczego galaktyki umierają.
      Od lat 50. ubiegłego wieku przyjmuje się, że populacje gwiazd w innych galaktykach są podobne do tej, którą obserwujemy w Drodze Mlecznej – składają się one z gwiazd o dużej, średniej i małej masie. Duńscy naukowcy, na podstawie obserwacji 140 000 galaktyk do których analizy wykorzystano liczne zaawansowane modele, doszli do wniosku, że rozkład mas gwiazd w innych galaktykach wcale nie jest podobny do tego, co obserwujemy w najbliższym sąsiedztwie. Okazało się, że w odległych galaktykach gwiazdy mają zwykle większą masę niż w Drodze Mlecznej i u jej sąsiadów.
      Masa gwiazd wiele nam mówi. Jeśli zmienimy masę gwiazd, zmieni się też liczba supernowych oraz czarnych dziur powstających z masywnych gwiazd. Zatem uzyskane przez nas wyniki oznaczają, że musimy jeszcze raz rozważyć wiele naszych założeń, gdyż odległe galaktyki wyglądają inaczej niż nasza, mówi główny autor badań, Alber Sneppen z Instytutu Nielsa Bohra.
      Założenie, że rozkład wielkości i mas gwiazd z w odległych galaktykach jest taki sam jak w naszej, przyjęto przed około 70 laty dlatego, że nie wyliśmy w stanie wystarczająco szczegółowo galaktyk tych badać. Widzieliśmy jedynie wierzchołek góry lodowej i od dawna podejrzewaliśmy, że założenie, iż inne galaktyki wyglądają jak nasza, nie jest zbyt dobrym założeniem. Nikt jednak nie próbował dowieść, że w innych galaktykach populacje gwiazd wyglądają inaczej. Nasze badania pozwoliły nam to wykazać, a to otwiera drogę do lepszego zrozumienia tworzenia się galaktyk i ich ewolucji, wyjaśnia profesor Charles Steinhardt.
      Naukowcy wykorzystali katalog COSMO, wielką międzynarodową bazę danych zawierającą ponad milion obserwacji światła z galaktyk, od takich znajdujących się w naszym najbliższym sąsiedztwie, po obiekty odległe o 12 miliardów lat świetlnych. Autorzy analizy twierdzą na przykład, że odkryli, dlaczego w pewnym momencie galaktyki przestają tworzyć nowe gwiazdy. Teraz, gdy lepiej określiliśmy masy gwiazd, widzimy nowy wzorzec. Najmniej masywne galaktyki tworzą gwiazdy, a bardziej masywne ich nie tworzą. To wskazuje, że istnieje uniwersalny trend opisujący śmierć galaktyk, mówi Sneppen.
      Z badań wynika również, że większość galaktyk posiada bardziej masywne populacje gwiazd, niż sądzono. Ze szczegółami pracy można zapoznać się na łamach The Astrophysical Journal.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów odkrył właśnie najbardziej odległą znaną galaktykę. Może być ona domem najstarszych gwiazd we wszechświecie. Obiekt HD1, który ma wciąż status kandydata na galaktykę, znajduje się w odległości 13,5 miliarda lat świetlnych od Ziemi. To już kolejne w ostatnim czasie niezwykłe odkrycie. Niedawno informowaliśmy o zauważeniu przez Teleskop Hubble'a najstarszej gwiazdy we wszechświecie.
      Badacze nie są pewni charakteru HD1. Gdy ją odkryli, zauważyli niepodziewanie jasną emisję w ultrafiolecie. To wskazuje na zachodzenie bardzo energetycznych procesów. Tym, co przede wszystkim przychodzi do głowy, jest powstawanie gwiazd. Takie też założenie przyjęto na początku. Jednak gdy wykonano odpowiednie obliczenia okazało się, że galaktyka musiałaby tworzyć gwiazdy z nieprawdopodobną prędkością ponad 100 rocznie. To co najmniej 10-krotnie szybciej niż można się spodziewać po tego typu galaktykach. Dlatego też uczeni zaczęli podejrzewać, że w HD1 nie powstają standardowe gwiazdy.
      Pierwsza generacja gwiazd (gwiazdy III populacji), które tworzyły się we wszechświecie była bardziej masywna, jaśniejsza i cieplejsza niż współczesne gwiazdy. Jeśli przyjmiemy założenie, że w HD1 powstają gwiazdy III populacji, wówczas łatwiej wyjaśnić właściwości tej galaktyki. Trzeba pamiętać, że gwiazdy III populacji emitowały więcej ultrafioletu niż późniejsze populacje, a to może wyjaśniać niezwykle jasną emisję HD1 w paśmie ultrafioletowym, mówi Fabio Pacucci, jeden z autorów badań. Alternatywnym wyjaśnieniem dla ilości emitowanego promieniowania UV przez HD1 jest przyjęcie, że wewnątrz galaktyki istnieje supermasywna czarna dziura o masie 100 milionów razy większej niż masa Słońca. Wchłania ona otaczającą ją materię, podgrzewając ją i wywołując m.in. emisję w ultrafiolecie. Jeśli rzeczywiście w HD1 znajduje się supermasywna czarna dziura, byłby to najbardziej odległy znany nam obiekt tego typu.
      HD1 to wielkie dziecko w porodówce wczesnego wszechświata. Ma niemal dwukrotnie większe przesunięcie ku czerwieni niż rekordowo odległy kwazar. To niezwykłe osiągnięcie, dodaje współautor badań, Avi Loeb.
      Galaktyka została odkryta po ponad 1200 godzinach obserwacji za pomocą Subaru Telescope, VISTA Telescope, UK Infrared Telescope oraz Spitzer Space Telescope. Zauważenie HD1 wśród ponad 700 000 innych obiektów było trudne. Charakterystyka przesunięcia ku czerwieni HD1 odpowiada bardzo dobrze galaktyce położonej w odległości 13,5 miliarda lat świetlnych, wyjaśnia Yuichi Harikane z Uniwersytetu Tokijskiego, który jako pierwszy zauważył HD1. Obserwacje za pomocą wspomnianych teleskopów potwierdzono przy użyciu ALMA (Atacama Large Milimeter/submilimeter Array). Badania pokazały, że rzeczywiście HD1 znajduje się w odległości 100 milionów lat świetlnych dalej, niż dotychczasowa rekordzistka wśród galaktyk – GN-z11.
      Odkrywcy z niecierpliwością czekają teraz na rozpoczęcie pracy naukowej przez Teleskop Kosmiczny Jamesa Webba (JWST). Pozwoli on na ostatecznie potwierdzenie odległości, w jakiej znajduje się HD1. Jeśli obecne wnioski się potwierdzą, będzie to najdalsza i najstarsza ze znanych nam galaktyk. Ponadto JWST pozwoli na bardziej szczegółową jej analizę, dzięki czemu uczeni będą mogli stwierdzić czy któraś z ich hipotez – o produkcji gwiazd III populacji lub o istnieniu supermasywnej czarnej dziury – jest prawdziwa.
      Więcej na temat odkrycia można przeczytać w artykule A Search for H-Dropout Lyman Break Galaxies at z~12-16. Natomiast w autorzy artykułu Are the Newly-Discovered z∼13 Drop-out Sources Starburst Galaxies or Quasars? zastanawiają się nad charakterem HD1.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...