Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

U 11 gatunków dzikich zapylaczy w USA wykryto wirusy, które dziesiątkują hodowlane pszczoły. Wszystko wskazuje na to, że do zarażenia doszło za pośrednictwem pyłku.

U większości tych owadów nie odnotowano wcześniej obecności pszczelich wirusów. Wyniki najnowszego studium zespołu Diany Cox-Foster z Uniwersytetu Stanowego Pensylwanii ukazały się w PLoS ONE. Pani entomolog podkreśla, że w świetle uzyskanych danych nie można, niestety, wierzyć, że wirusowe choroby hodowlanych pszczół miodnych ograniczą się tylko do nich.

Naukowcy poszukiwali pięciu wirusów w organizmach owadów zapylających i w pyłku z roślin z okolic pasiek w Pensylwanii, Illinois i stanie Nowy Jork. Okazało się, że izraelski wirus ostrego paraliżu (IAPV) występował u dzikich owadów w pobliżu uli z zarażonymi pszczołami, nie było go zaś, gdy pasieka pozostawała wolna od wirusa.

Wirusy to, wg Cox-Foster, jedna z możliwych przyczyn zespołu masowego ginięcia pszczoły miodnej. Co wirusy robią dzikim zapylaczom? Na razie nie wiadomo, ale najprawdopodobniej z ich powodu zmniejsza się np. liczebność trzmieli.

Co ważne, naukowcy wykryli wirus zdeformowanych skrzydeł (ang. deformed-wing virus, DWV), który jest wirusem RNA odkrytym w latach 80. XX w. w Japonii, a obecnie występującym na całym świecie, oraz wirus choroby woreczkowej czerwia (ang. sacbrood virus, SBV) w pyłku transportowanym przez niezarażone pszczoły. Stąd pomysł, że źródłem patogenów, czyli tzw. wektorem, jest właśnie nektar. Wirusy mogą się w nim bowiem znajdować i być z niego przenoszone.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Entomolodzy z University of Maryland wykazali, że czas życia pszczół miodnych trzymanych w kontrolowanych warunkach laboratoryjnych jest aż o 50% krótszy niż w latach 70. XX wieku. Gdy zdobyte w ten sposób dane modelowano na warunki naturalne, uzyskane wyniki odpowiadały obserwowanemu od kilku dziesięcioleci trendowi zanikania kolonii i zmniejszonej produkcji miodu.
      To pierwsze badania, które pokazały, że doszło do zmiany długości życia pszczół i jest ona potencjalnie niezwiązana z czynnikami zewnętrznymi. To zaś może oznaczać, że mamy do czynienia ze zmianą genetyczną. W naszych badaniach izolowaliśmy pszczoły od kolonii bezpośrednio przed tym, jak weszły w dorosłość. Zatem to, co skraca ich życie, wydarzyło się przed tym momentem. To wskazuje na komponent genetyczny. Jeśli ta hipoteza jest prawidłowa, to podsuwa nam ona również rozwiązanie. Jeśli uda się nam odnaleźć ten czynniki genetyczne, być może będziemy w stanie wyhodować dłużej żyjące pszczoły, mówi doktorant Anthony Nearman z Wydziału Entomologii.
      Nearman po raz pierwszy zauważył, że poszczególne pszczoły żyją krócej, gdy wraz z profesorem Dennisem von Engelsdorpem przygotowywali się do badań nad hodowaniem dorosłych pszczół w laboratoriach. W pewnym momencie spostrzegł, że pszczoły, którymi się zajmował, żyły średnio 17,7 dnia, podczas gdy w latach 70. było to 34,3 dnia. Zaczął więc przeglądać literaturę fachową z ostatnich 50 lat. Okazało się, że dochodzi do wielkich zmian. Ustandaryzowane metody hodowania pszczół miodnych w laboratoriach pojawiły się dopiero w w obecnym wieku, więc należałoby się spodziewać, że obecnie czas życia pszczół w laboratoriach jest taki sam jak w przeszłości lub dłuższy, gdyż po prostu lepiej sobie z tym radzimy. Tymczasem okazało się, że śmiertelność zwiększyła się dwukrotnie, mówi uczony.
      Mimo, że warunki laboratoryjne znacznie różnią się od naturalnych, historyczne dane wskazują na podobną długość życia pszczół. Naukowcy uważają też, że izolowane czynniki skracające życie w jednym środowisku, będą skracały je też w innym. Z wcześniejszych badań wiadomo też, że krócej żyjące pszczoły wytwarzają mniej miodu.
      Gdy naukowcy modelowali swoje spostrzeżenia na warunki naturalne stwierdzili, że przy krócej żyjących pszczołach śmiertelność kolonii powinna wynosić około 33% rocznie. To zgadza się z obserwacjami amerykańskich pszczelarzy, którzy od 14 lat donoszą o śmiertelności rzędu 30–40 procent.
      Nearman i van Engelsdorp przyznają, że pszczoły mogły być w stadium larwalnym – przed zabraniem ich do laboratorium – narażone na kontakt z wirusami czy pestycydami, gdyż były wtedy karmione przez robotnice. Jednak nie wykazywały żadnych objawów wystawienia na te czynniki, dlatego naukowcy uważają genetykę za główną przyczynę skrócenia czasu ich życia. Tym bardziej, że czynniki genetyczne skracają też życie np. muszki owocówki.
      W następnym etapie badań uczeni porównają długość życia pszczół miodnych z USA i innych krajów. Jeśli zauważą różnice, spróbują wyizolować czynniki za nie odpowiedzialne. Przyjrzą się czynnikom genetycznym, pestycydom oraz obecności wirusów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy wykazano, że u pszczoły miodnej wystawionej na kontakt z nowoczesnymi pestycydami – sulfoxaflorem i imidakloprydem – dochodzi do uszkodzenia funkcji optomotorycznych, przez co zwierzę nie jest w stanie utrzymać ruchu w linii prostej. Dochodzi przy tym do uszkodzenia komórek mózgu oraz deregulacji genów odpowiadających za oczyszczanie organizmu z toksyn. To już kolejne dowody wskazujące, że te szeroko stosowane środki chemiczne są wysoce szkodliwe dla pożytecznych dla nas owadów, jak pszczoły.
      Jeśli człowiek, nie będący pod wpływem alkoholu czy środków odurzających, nagle utraci zdolność do pewnego poruszania się po linii prostej, może to wskazywać na uszkodzenia ośrodkowego układu nerwowego. Dokładnie takie same problemy ma pszczoła z uszkodzonym układem nerwowym.
      Wykazaliśmy, że insektycydy takie jak sulfoxaflor i imidaklopryd głęboko upośledzają zachowania pszczół opierające się na wskazówkach wzrokowych. To bardzo poważny problem, gdyż  odpowiednia reakcja na bodźce wzrokowe jest dla pszczół kluczowa dla nawigowania i przetrwania, mówi główna autorka badań doktor Rachel H. Parkinson z Uniwersytetu Oksfordzkiego.
      Organizacja Narodów Zjednoczonych ds. Wyżywienia i Rolnictwa (FAO), WHO, liczni naukowcy i organizacje pszczelarskie od dawana alarmują, że środki chemiczne z grupy neonikotynoidów są szkodliwe dla pszczół i innych zapylaczy. Mimo to są dopuszczone przez UE i szeroko stosowane w rolnictwie.
      Owady posiadają wrodzoną, opartą na sygnałach optycznych, zdolność do powrotu na prostą trasę po której się poruszały, czy to idąc czy lecąc. Parkinson i jej zespół przeprowadzili serię eksperymentów, podczas których idącym pszczołom wyświetlano m.in. obrazy sugerujące, że zostały zdmuchnięte z kursu i muszą dokonać jego korekty. Uczeni porównali zdolności optomotoryczne czterech grup dzikich pszczół. W każdej z grup znajdowało się od 22 do 28 zwierząt. Każdej z grup przez 5 dni podawano do picia roztwór cukru. W przypadku jednej z nich był on czysty, druga grupa otrzymała roztwór zanieczyszczony 50 ppb (części na miliard) imidaklopridem, trzecia miała roztwór zanieczyszczony 50 ppb sulfoxaflorem, a roztwór ostatniej zanieczyszczono 25 ppb imidaklopridem i 25 ppb sulfoxaflorem.
      W każdym eksperymencie pszczoły, które piły zanieczyszczone roztwory, wypadły znacznie gorzej, niż zwierzęta nie mające kontaktu z chemikaliami. Pszczoły takie np. gwałtownie zmieniały kierunek marszu tylko w jedną stronę, a nie reagowały na konieczność zmiany w drugą, lub też w ogóle nie reagowały na sygnały świadczące, że muszą skorygować kurs.
      Badacze wykazali też, że w mózgach pszczół poddanych działaniu chemikaliów w częściach odpowiedzialnych za przetwarzanie sygnałów wizualnych było więcej martwych komórek niż w mózgach zwierząt z grupy kontrolnej. Ponadto doszło też do rozregulowania genów odpowiedzialnych za oczyszczanie organizmu z toksyn. Jednak ten efekt był dość słaby i zależał od konkretnej pszczoły, więc jest mało prawdopodobne, by samo rozregulowanie genów odpowiadało za problemy z przetwarzaniem sygnałów wzrokowych.
      Żeby lepiej zrozumieć ryzyko, jakie dla pszczół stwarzają insektycydy, musimy zbadać, czy efekty takie zaobserwujemy też podczas lotu. Jeśli u pszczół pojawiają się takie same problemy w czasie lotu, może mieć to negatywne skutki dla ich zdolności do nawigowania, odżywiania się i zapylania roślin, mówi Parkinson.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W latach 2009–2012 naukowcy podróżujący na statku badawczym Tara zebrali próbki wody oceanicznej z całego świata. Posłużyły one naukowcom do zbadania populacji wirusów występujących w wodzie oceanów. Guillermo Domínguez-Huerta z Ohio State University i jego zespół ogłosili właśnie wyniki badań nad wirusami RNA. Naukowcy poinformowali, że udało im się zidentyfikować ponad 5000 typów wirusów RNA, z których niemal wszystkie nie były dotychczas znane nauce.
      Uczonych interesowała przede wszystkim rola wirusów w pochłanianiu węgla. Każdego dnia olbrzymie ilości martwego planktonu opadają na dno oceanów, więżąc w ten sposób węgiel z atmosfery. Może on pozostać na dnie przez miliony lat. Mechanizm ten, zwany biologiczną pompą węglową, pozwala na wycofanie z atmosfery nawet 12 miliardów ton węgla rocznie.
      Uczeni chcieli się dowiedzieć, w jaki sposób wirusy wpływają na ten proces. Zdaniem Domíngueza-Huerty, co najmniej 11 z nowo odkrytych wirusów RNA infekuje plankton. Gdy ludzie myślą o wirusach, myślą o chorobach, a nie o oczyszczeniu atmosfery z dwutlenku węgla, stwierdza uczony. Wirusy, infekując plankton, mogą wpływać na jego możliwości przeżycia, a co za tym idzie, na ilość CO2 wycofywanego z atmosfery.
      Co interesujące, okazało się, że wiele wirusów RNA jest w stanie zmieniać metabolizm swoich gospodarzy używając do tego celu genów ukradzionych samemu gospodarzowi. Mechanizm taki mógł wyewoluować po to, by wirusy były sobie w stanie poradzić w niezwykle ubogich w składniki odżywcze otwartych wodach oceanicznych. To może być kolejna droga, za pomocą której wirusy mogą wpływać na biologiczną pompę węglową.
      W czasie badań naukowcy zauważyli, że bioróżnorodność wirusów w Arktyce i Antarktyce jest wyższa, niż się spodziewano. Zwykle bowiem bioróżnorodność jest wyższa bliżej równika i spada w miarę zbliżania się do biegunów. Wydaje się, że jeśli chodzi o bioróżnorodność, to wirusy nie przejmują się temperaturami. Wydaje się, że na obszarach polarnych dochodzi do większej liczby interakcji pomiędzy wirusami a organizmami komórkowymi. To pokazuje, że wysokie zróżnicowanie jest tutaj spowodowane faktem, że wiele gatunków wirusów konkuruje o tego samego gospodarza. Jest mniej gatunków gospodarzy, ale więcej gatunków wirusów, mówi Ahmed Zayed, jeden ze współautorów badań.
      Wyniki badań pozwolą lepiej określić, które obszary oceanów pochłaniają więcej węgla, a które mniej, posłużą do udoskonalenia modeli klimatycznych, a być może w przyszłości – manipulując wirusami RNA w oceanach – będziemy w stanie sterować ilość pochłanianego przez nie węgla.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Królewskich Ogrodów Botanicznych w Kew opisali na łamach Philosophical Transactions of The Royal Society B, w jaki sposób trzmiele aktywują lecznicze właściwości nektarów roślinnych. W badaniach, którymi kierowała doktor Hauke Koch, pomagał im profesor Mark Brow z Royal Holloway, University of London. Naukowcy zebrali nektar oraz pyłek z lipy i chruściny jagodnej by sprawdzić, jak znajdujące się w nich związki są przetwarzane przez trzmiele. Odkryli, że dwa związki występujące w nektarach tych gatunków są aktywowane w przewodzie pokarmowym owadów.
      Głównym celem badań było stwierdzenie, w jaki sposób nektar i zawarte w nim związki chronią trzmiele przed rozpowszechnionym pasożytem układu pokarmowego, pierwotniakiem Crithidia bombi. Mają nadzieję, że to, czego się dowiedzą, uda się wykorzystać w działaniach mających na celu ochronę zapylaczy. Zapylanie roślin to jedna z najważniejszych ról, jakie mają do spełnienia owady. Tymczasem liczba owadów spada, a przyczyniają się do tego m.in. choroby pasożytnicze.
      Poważnym problemem są tutaj pasożyty pszczoły miodnej. Ludzie, przewożący pszczoły na duże odległości, przenoszą bowiem wraz z nimi pasożyty, które w ten sposób trafiają do nowego środowiska. I mogą przejść z pszczół miodnych na gatunki dzikie. Sytuację dodatkowo pogarsza powszechne stosowanie środków chemicznych w rolnictwie. Środki te negatywnie wpływają m.in. na zdrowie układu pokarmowego zapylaczy, osłabiając ich mikrobiom, co ułatwia zadanie pasożytom.
      Naukowców szczególnie interesuje C. bombi, gdyż coraz więcej dowodów wskazuje na to, że ten szeroko rozpowszechniony pasożyt niekorzystnie wpływa na przetrwanie i rozwój kolonii trzmieli.
      Zapylacze mają bardzo zróżnicowany mikrobiom przewodu pokarmowego oraz środowisko gniazdowania. Mikroorganizmy mogą odgrywać olbrzymią rolę w utrzymaniu zdrowia zapylaczy, chroniąc ich przed chorobami i dostarczając składników odżywczych. Im lepiej zrozumiemy znaczenie poszczególnych mikroorganizmów wchodzących w skład mikrobiomu, tym lepiej będziemy mogli pomóc zapylaczom. Na przykład kolonie pszczoły miodnej czy trzmieli mogą być wspierane za pomocą probiotyków, a dzikie kolonie można wspierać zakazując stosowania pestycydów, które mają negatywny wpływ na ich mikrobiom oraz poprzez zapewnianie im dostępu do roślin, których nektar czy pyłek zapewniają zdrowie mikrobiomu, mówi doktor Koch.
      Naukowcy najpierw wzięli na warsztat pyłek i nektar z chruściny jagodnej. Okazało się, że zawarty w nich związek chroni trzmiele przed infekcją C. bombi, ale tylko po tym, jak wejdą w kontakt z ich mikrobiomem. Sam proces trawienny prowadzi bowiem do jego dezaktywacji. Uczeni odkryli również, że i w nektarze lipy znajduje się pożyteczny związek. Jednak ten związek jest aktywowany nie przez mikrobiom, ale przez same procesy trawienne.
      Od dziesięcioleci zbieramy kolejne dowody pokazujące, że działania człowieka, takie jak nadmierne używanie pestycydów, zmiany klimatyczne, coraz bardziej intensywne rolnictwo negatywnie wpływają na zdrowie zapylaczy i przyczyniają się do spadku ich liczby. Musimy teraz poszukać rozwiązań, pozwalających na utrzymanie zróżnicowanych i zdrowych populacji zapylaczy i innych owadów. Wiele z takich rozwiązań jesteśmy w stanie znaleźć tylko wówczas, gdy lepiej zrozumiemy procesy wpływające na zdrowie owadów, dodaje profesor Phil Stevenson z Ogrodów w Kew.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ostatnim czasie bardzo modne stało się ustawianie uli w miastach. Jednak to nie jest dobry pomysł, Doktor Jacek Wendzonka z Wydziału Biologii Uniwersytetu Adama Mickiewicza ostrzega, że inwazja pszczoły miodnej w miastach zagraża dzikim pszczołom. A to one zapylają większość roślin.
      Problem już widać np. na Cytadeli w Poznaniu. Na tak ograniczonym obszarze to jest jak potop szwedzki, mówi uczony serwisowi Uniwersyteckie.pl.
      Naukowcy apelują do władz samorządowych polskich miast, by nie zwiększały liczby uli w mieście. Pszczoły wymierają, jednak proces ten nie dotyczy pszczoły miodnej. Dotyka on właśnie dzikich pszczół, w tym np. murarki. Zakładanie pasiek w miastach tylko pogłębia problem. Na terenach miejskich jest bowiem ograniczona liczba pożywienia, a olbrzymia liczba pszczół miodnych – w jednym tylko ulu może mieszkać kilkadziesiąt tysięcy osobników – stanowi groźną konkurencję dla dzikich pszczół. Dlatego też w czerwcu uczeni skupieni wokół inicjatywy „Nauka dla Przyrody” wystosowali do władz Gdańska list w tej sprawie.
      Doktor Wendzonka mówi, że na terenie Cytadeli – największej enklawy zieleni w centrum Poznania – żyje około 100 gatunków dzikich pszczół. Znalazły się one w poważnych tarapatach od czasu, gdy w Cytadeli postawiono ule.
      Problem jest tym większy, że wiele roślin uprawnych, jak np. lucerna, zapylanych jest przez samotnie żyjące pszczoły, a nie przez tworzącą roje pszczołę miodną. Najważniejsza jest naturalna bioróżnorodność i istnienie wielu gatunków. Tymczasem modne miejskie ule zagrażają tej bioróżnorodności.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...