Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Formowanie się pamięci długoterminowej u muszek owocowych można zobrazować jako napływ wapnia do komórek ciał grzybkowatych (corpora pedunculata), który ma miejsce po specjalnym treningu uwzględniającym okresy odpoczynku — poinformowali badacze z Baylor College of Medicine (BMC).

Mamy silne dowody na to, że w pamięć długoterminową zaangażowane są zmiany molekularne — powiedział dr Ronald Davis, profesor biologii molekularnej i komórkowej na BCM.

Davis i zespół uczyli muszki kojarzenia zapachu z lekkim wstrząsem elektrycznym. Trening odbywał się etapami: próby przedzielano okresami odpoczynku.

Odpoczynek jest kluczowym etapem procesu formowania się wspomnień. Trening z 5 etapami odpoczynku skutkował wspomnieniami utrwalonymi na więcej niż 1 dzień. Naukowcy posłużyli się obrazowaniem funkcjonalnym, by sprawdzić, kiedy u owadów dojdzie do uformowania się trwałych śladów pamięciowych.

Przed treningiem po wystawieniu na działanie zapachu mogliśmy widzieć przemieszczanie się pojedynczych jonów wapnia do wnętrza neuronów ciał grzybkowatych. Dobę po zakończeniu treningu w analogicznej sytuacji następował znaczny wzrost przepływu wapnia. Napływ jonów tego pierwiastka jest więc zjawiskiem równoległym do formowania się śladów pamięciowych. Badacze mogli w warunkach laboratoryjnych zablokować ruch wapnia, hamując działanie białka krytycznego dla tworzenia się nowych synaps. Wiadomo zaś, że zjawisko to jest nieodłączną częścią procesów pamięci długoterminowej (Neuron).

Share this post


Link to post
Share on other sites
Napływ jonów wapnia jest więc zjawiskiem równoległym do formowania się śladów pamięciowych. Badacze mogli w warunkach laboratoryjnych zablokować ruch wapnia, hamując działanie białka krytycznego dla tworzenia się nowych synaps.

 

Brak jonów wapnia blokuje tworzenie sie synaps?? 8)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Receptory smakowe muszek owocowych wyczuwają rybonukleozydy (nukleozydy budujące RNA).
      Ponieważ zwierzęta potrafią wytwarzać własne rybonukleozydy z węglowodanów i białek, wcześniej nie sądzono, że mogą być wyczuwane przez receptory smakowe.
      Badając zdolność larw muszek do wykrywania różnych cukrów, zespół Huberta Amreina i Dushyanta Mishry z Texas A&M Health Science Center odkrył, że silnie interesują się one agarozą zawierającą zarówno rybozę, jak i RNA.
      Okazało się, że larwy wykorzystują do tego białkowe receptory z podrodziny Gr28. Eksperymenty zademonstrowały, że neurony smakowe z ekspresją receptorów Gr28 są aktywowane przez rybozę i RNA, ale nie przez dezoksyrybozę. Kiedy geny Gr28 przetransferowano do wyczuwających cukry (fruktozę) neuronów smakowych, w których zwykle nie dochodzi do ich ekspresji, one także były aktywowane przez rybozę i RNA.
      Autorzy publikacji z pisma PLoS Biology zauważyli, że larwy Drosophila melanogaster, którym podawano pokarm pozbawiony rybonukleozydów, radziły sobie gorzej niż larwy hodowane na pełnej pożywce. Co więcej, larwy bez receptorów Gr28 rosły wolniej i wykazywały niższy wskaźnik przeżywalności.
      Amerykanie uważają, że choć ciało może samo wytwarzać te związki, zdolność do ich wykrywania w środowisku zapewnia korzyści szybko rosnącym organizmom, np. larwom muszek (w ciągu paru dni muszą one bowiem zwiększyć masę aż 200-krotnie).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Kraju Kwitnącej Wiśni zmierzyli aktywność mózgu pszczół japońskich (Apis cerana japonica), które walcząc z zagrażającą gniazdu japońską odmianą szerszenia azjatyckiego (Vespa mandarinia japonica), tworzą wokół wroga żywą kulę. Najeźdźca ulega przegrzaniu, a w końcu dusi się.
      Zaobserwowano zwiększoną aktywność parzystej struktury mózgu owadów, ciał grzybkowatych (corpora pedunculata), a głównie pewnego podtypu neuronów - klasy II komórek Kenyona. Wskazano też na rolę obszaru między częścią grzbietową mózgu a płatami wzrokowymi.
      Prof. Takeo Kubo z Uniwersytetu Tokijskiego prowokował pszczoły do utworzenia kuli, ustawiając w pobliżu wejścia do ula szerszenia przyczepionego do drutu. Gdy obrończynie zaczęły dusić domniemanego wroga, naukowcy wyjęli kilka z nich z kuli i zmierzyli poziom markera aktywności neuronalnej Acks w różnych częściach mózgu.
      Odkryliśmy, że w laboratorium podobny wzorzec ekspresji Acks można wywołać przez wystawienie pszczół japońskich na wysoką temperaturę (46°C). Na tej podstawie Japończycy stwierdzili, że ciała grzybkowate odgrywają ważną rolę w przetwarzaniu danych o temperaturze. Prawdopodobnie corpora pedunculata pozwalają precyzyjnie kontrolować temperaturę w kuli i utrzymywać ją na poziomie 46°C, póki szerszeń nie zginie. Kubo sądzi, że ciała grzybkowate "modulują drgania mięśni służących do latania".
      Pszczoły muszą dbać o stałość temperatury, bo poniżej 46 stopni wróg nie zginie i cały wysiłek pójdzie na marne, a powyżej zginie nie tylko on, ale i robotnice.
    • By KopalniaWiedzy.pl
      Pod nieobecność biglikanu - proteoglikanu występującego w śródmiąższu oraz na powierzchni komórek chrząstek, kości i skóry - synapsy płytki nerwowo-mięśniowej myszy zaczynają się rozpadać ok. 5 tyg. po narodzinach.
      Wprowadzenie biglikanu do hodowli komórkowej pomagało ustabilizować niedawno powstałe synapsy. Naukowcy z Brown University zaznaczają, że ich odkrycia będzie można wykorzystać w terapii stwardnienia zanikowego bocznego (ang. amyotrophic lateral sclerosis, ALS) czy rdzeniowego zaniku mięśni (ang. spinal muscular atrophy, SMA).
      Wcześniejsze badania pokazały, że biglikan zapobiega utracie funkcji mięśni w dystrofii mięśniowej Duchenne'a. Teraz okazuje się, że jest także kluczowym graczem w procesie podłączania nerwów do mięśni.
      To, co płytki motoryczne robią sekunda po sekundzie, jest istotne dla kontrolowania przez mózg ruchów, a także dla długoterminowego zdrowia zarówno mięśni, jak i neuronów ruchowych - opowiada Justin Fallon.
      W ramach poprzednich badań Fallon ustalił, że u myszy z tą samą mutacją co u pacjentów z dystrofią Duchenne'a biglikan wspiera aktywność utrofiny - białka znacznie ograniczającego degradację mięśni. Ponieważ ma ona podobną budowę do dystrofiny, której chorzy nie wytwarzają, przejmuje jej zadania.
      W ramach najnowszego studium Amerykanie odkryli, że biglikan wiąże się i pomaga aktywować enzym zwany MuSK. Działa on jak główny regulator innych białek, które tworzą i stabilizują płytkę nerwowo-mięśniową. U zmodyfikowanych genetycznie myszy, u których nie dochodziło do ekspresji biglikanu, płytki nerwowo-mięśniowa początkowo powstawały, ale 5 tygodni po porodzie z dużym prawdopodobieństwem rozpadały się. Eksperymenty pokazały, że u gryzoni "bezglikanowych" aż 80% synaps należało uznać za niestabilne. U zwierząt tych wykryto więcej anomalii, np. nieprawidłowo rozmieszczone receptory czy dodatkowe fałdy błony podsynaptycznej. Sądzimy, że te dodatkowe fałdy są pozostałościami wcześniejszych miejsc synaptycznych.
      Fallon i inni wyliczyli, że u myszy pozbawionych biglikanu poziom MuSK w synapsach płytki ruchowej był 10-krotnie niższy niż w grupie kontrolnej.
    • By KopalniaWiedzy.pl
      Niewydolność serca wiąże się z pogorszeniem funkcjonowania poznawczego i utratą substancji szarej mózgu. Wg autorów badania, utrudnia to realizację zaleceń lekarza, np. pamiętanie o zażywaniu właściwych leków o wyznaczonej porze.
      Nasze wyniki pokrywają się z obserwacjami osób z niewydolnością serca, które mają problem z wdrożeniem złożonych zaleceń i sugerują, że wskazane są prostsze instrukcje.
      Prof. Osvaldo Almeida z Uniwersytetu Zachodniej Australii zbadał za pomocą testów poznawczych 35 pacjentów z niewydolnością serca (NS), 56 z chorobą niedokrwienną serca (ChNS), która często, ale nie zawsze towarzyszy niewydolności, oraz 64 zdrowe osoby (grupa kontrolna). Objętość istoty szarej w różnych częściach mózgu oceniano za pomocą rezonansu magnetycznego.
      Okazało się, że w porównaniu do grupy kontrolnej, pacjenci z niewydolnością serca wypadli gorzej pod względem pamięci bezpośredniej i długotrwałej, a także szybkości reakcji.
      W ramach naszego studium ustaliliśmy, że zarówno niewydolność, jak i choroba niedokrwienna serca wiążą się z utratą neuronów w określonych obszarach mózgu, które są ważne dla modulowania emocji i aktywności umysłowej. Jest ona silniej zaznaczona u osób z niewydolnością, ale może także występować u pacjentów z chorobą niedokrwienną bez niewydolności serca. [...] Ludzie z NS i ChNS wykazują, w porównaniu do grupy kontrolnej, drobne deficyty poznawcze. Ponownie są one bardziej widoczne u chorych z NS.
      Regiony, w których stwierdzono ubytki substancji szarej, odpowiadają za pamięć, wnioskowanie i planowanie. Istnieją dowody, że optymalizują one wydajność w wymagających wysiłku umysłowego złożonych zadaniach. W konsekwencji utarta komórek nerwowych w tych obszarach może upośledzić [...] pamięć, zdolność modyfikowania zachowania, hamowanie emocjonalne i poznawcze, a także organizację.
      O ile nam wiadomo, to pierwsze studium, w którym uwzględniono dodatkową grupę z ChNS, dzielącą czynniki ryzyka z NS. Pozwoliło nam to wykazać, że ubytki poznawcze mogą być niespecyficznym skutkiem narastającego wyniszczenia chorobą sercowo-naczyniową. Analizy ujawniły, że subtelnych deficytów nie da się wyjaśnić upośledzeniem frakcji wyrzutowej lewej komory, powszechnymi schorzeniami współwystępującymi czy markerami biochemicznymi.
      W przyszłości Almeida zamierza ustalić, za pośrednictwem jakich szlaków fizjologicznych HF prowadzi do utraty neuronów i pogorszenia funkcjonowania poznawczego i czy zmiany mają charakter postępujący.
    • By KopalniaWiedzy.pl
      Péos, Mininos, Cécil, Teha, i Amtan są delfinami z francuskiego delfinarium Planète Sauvage w Port-Saint-Père. W nocy wydają dziwne dźwięki, które wg naukowców, są powtórzeniami pieśni długopłetwców, włączonej do podkładu muzycznego, do którego występują. Gdyby podejrzenia etologów się potwierdziły, mielibyśmy do czynienia z pierwszym udokumentowanym przypadkiem, kiedy delfiny ćwiczą nowe dźwięki nie bezpośrednio po ich zasłyszeniu, ale po upływie kilku godzin (Frontiers in Comparative Psychology).
      Do odkrycia doszło przypadkowo. Martine Hausberger z Université de Rennes 1 umieściła w basenie delfinów hydrofony, ponieważ bardzo mało wiadomo o ich nocnych wyczynach akustycznych. Pewnego razu akademicy usłyszeli nieznane i nietypowe, wg nich, dźwięki. Wiedząc, że delfiny lubią naśladować, dokładniej przyjrzeli się ich otoczeniu. Dość szybko wpadli na to, że w nowej ścieżce dźwiękowej towarzyszącej skokom i zabawom z piłką oprócz mew i pogwizdywań samych delfinów pojawiają się również zaśpiewy humbaków. Gdy za pomocą programu komputerowego porównano elementy podkładu i wprawki delfinów, okazało się, że te ostatnie bardzo przypominają komunikaty długopłetwców.
      W drugiej części studium naukowcy zaprezentowali 20 ochotnikom nagrania dzikich długopłetwców i delfinów. Później odtworzyli im nocne nagrania z akwarium w Port-Saint-Père i zapytali, czy to humbaki, czy delfiny. W 76% przypadków badani twierdzili, że humbaki.
      Péos, Mininos, Cécil, Teha, i Amtan nigdy nie ćwiczyły dźwięków w czasie pokazu. Zawsze odczekiwały do wieczora/nocy. Hausberger przypuszcza, że występy sprzyjają nauce i stanowią rodzaj primingu zwiększającego dostępność pewnych kategorii poznawczych. To specjalny czas [...], ponieważ za poprawne zachowania delfiny dostają nagrody. Przez resztę dnia park jest otwarty i dużo się dzieje, ale delfiny nie są tym najwyraźniej tak bardzo zainteresowane, bo w nocy ćwiczą tylko popisy humbaków.
      Na razie nie wiadomo, czy delfiny "humbakują" przez sen. Jeśli tak, oznaczałoby to, że podobnie jak u ludzi, w nocy następuje u nich konsolidacja śladów pamięciowych. By to rozstrzygnąć, Francuzi planują badania z elektroencefalografem.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...