Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy z University of Utah stworzyli najprawdopodobniej najmniejszy w historii układ pamięci. Przez 112 sekund przechowywali dane w jądrze atomu, wykorzystując do tego celu spin. Później odczytali te informacje. Badania takie w przyszłości posłużą do stworzenia szybkich układów pamięci zarówno dla komputerów konwencjonalnych jak i dla maszyn kwantowych.

Zaobserwowana przez nas długość przechowywania danych jest bardziej niż wystarczająca do stworzenia układów pamięci. To całkiem nowy sposób składowania i odczytywania informacji - stwierdził autor badań, profesor Christoph Boehme. Zanim jednak zaczniemy się w sklepach rozglądać za "atomowymi" układami pamięci, będziemy musieli poczekać co najmniej kilka lat. Zastosowany przez naukowców aparat do zapisywania i odczytywania danych pracuje bowiem w temperaturze 3,2 kelwinów i musi być otoczony polem magnetycznym 200 000 razy silniejszym od pola magnetycznego Ziemi.

Oczywiście, że możemy już dzisiaj stworzyć taki układ pamięci, ale czy naprawdę potrzebujemy komputera, który pracuje w -270 stopniach Celsjusza i wymaga wielkiego laboratorium do generowania odpowiedniego pola magnetycznego? Najpierw musimy nauczyć się, jak wymusić pracę w wyższych, bardziej praktycznych temperaturach, i pozbyć się silnego pola magnetycznego potrzebnego do ustawienia spinu - mówi profesor.

Największym osiągnięciem Boehme jest elektroniczne odczytanie danych. Już przed dwoma laty innej grupie uczonych udało się przechować przez 2 sekundy dane w jądrze atomu, ale nie odczytali ich elektronicznie.

Badania nad "atomową" pamięcią Boehme prowadzi od wielu lat, a w 2006 roku jego zespół zaprezentował sposób na odczytanie danych z 10 000 atomów fosforu umieszczonych na krzemie.

Obecnie Boehme, Dane McCamey i inni uczeni z Utah wykorzystali cienki, wzbogacony fosforem kawałek krzemu o powierzchni 1 mm2 i umieścili na nim styki elektryczne. Całość włożono do kontenera, w którym panowało bardzo niska temperatura i poddano działaniu pola magnetycznego o wartości 8,59 tesli, które odpowiednio ustawiło spiny elektronów atomu fosforu. Za pomocą fal elektromagnetycznych o częstotliwościach bliskich terahercowi zmieniano kierunek spinów. Następnie za pomocą radiowych fal ultrakrótkich przeniesiono informacje z elektronów do jądra. Podczas odczytu cały proces odwrócono. Za pomocą fal o terahercowej częstotliwości przeniesiono informacje z jądra do elektronów i je odczytano dzięki temu, że spin elektronów został zamieniony na zmiany w przepływie prądu elektrycznego.

Krótko mówiąc, zapisaliśmy '1' w jądrze atomu. Wykazaliśmy, że możemy odczytywać i zapisywać dane ze spinu w jądrze - mówi Boehme. Informacje udało się wielokrotnie zapisywać i odczytywać średnio przez 112. Po tym czasie jądro atomu traciło oinformację o spinie. W ciągu tych 112 sekund przeprowadzono 2000 operacji odczytu tych samych danych, co dowodzi, że odczytanie informacji nie niszczy jej, a zatem takie jej przechowywanie jest wykonalne.

Na obecnym etapie udało się odczytać spin z wielu jąder atomu. Taka technika sprawdzi się w komputerach klasycznych, ale nie w kwantowych, gdzie konieczne jest odróżnienie spinu z pojedynczego atomu. Boehme mówi, że uczeni powinni sobie poradzić z tym w ciągu kilku najbliższych lat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Wydziału Fizyki Uniwersytetu Oksfordzkiego wykonali ważny krok w kierunku praktycznego wykorzystania komputerów kwantowych. Jako pierwsi zaprezentowali kwantowe przetwarzanie rozproszone. Wykorzystali przy tym fotoniczny interfejs, za pomocą którego połączyli dwa procesory kwantowe w jeden w pełni działający komputer. Swoje osiągnięcie opisali na łamach Nature.
      W ten sposób zapoczątkowali rozwiązanie problemu skalowalności maszyn kwantowych. Dzięki temu można, przynajmniej teoretycznie, połączyć olbrzymią liczbę niewielkich urządzeń kwantowych, które działałyby jak jeden procesor operujący na milionach kubitów. Zaproponowana na Oksfordzie architektura składa się z niewielkich węzłów, z których każdy zawiera małą liczbę kubitów, na które składają się jony uwięzione w pułapkach. Połączone za pomocą światłowodów węzły można ze sobą splątać, co pozwala na przeprowadzanie obliczeń kwantowych, podczas których wykorzystuje się kwantową teleportację.
      Oczywiście już wcześniej różne zespoły naukowe potrafiły dokonać kwantowej teleportacji stanów. Wyjątkowym osiągnięciem uczonych z Oksfordu jest teleportacja bramek logicznych. Zdaniem badaczy, kładzie to podwaliny pod „kwantowy internet” przyszłości, w którym odległe procesory utworzą bezpieczną sieć komunikacyjną i obliczeniową.
      Autorzy dotychczasowych badań nad kwantową teleportacją skupiali się na teleportacji stanów kwantowych pomiędzy fizycznie oddalonymi systemami. My użyliśmy kwantowej teleportacji do przeprowadzenia interakcji pomiędzy takimi systemami. Precyzyjnie dostrajając takie interakcje możemy przeprowadzać operacje na bramkach logicznych pomiędzy kubitami znajdującymi się w oddalonych od siebie miejscach. To pozwala na połączenie różnych procesorów kwantowych w jeden komputer, mówi główny autor badań Dougal Main.
      Wykorzystana koncepcja jest podobna do architektury superkomputerów, w których poszczególne węzły obliczeniowe – de facto osobne komputery – są połączone tak, że działają jak jedna wielka maszyna. W ten sposób naukowcy ominęli problem upakowania coraz większej liczby kubitów w jednym komputerze, zachowując jednocześnie podatne na zakłócenia stany kwantowe, niezbędne do przeprowadzania operacji obliczeniowych. Taka architektura jest też elastyczna. Pozwala na podłączania i odłączanie poszczególnych elementów, bez zaburzania całości.
      Badacze przetestowali swój komputer za pomocą algorytmu Grovera. To kwantowy algorytm pozwalający na przeszukiwanie wielkich nieuporządkowanych zbiorów danych znacznie szybciej niż za pomocą klasycznych komputerów. Nasz eksperyment pokazuje, że obecna technologia pozwala na kwantowe przetwarzanie rozproszone. Skalowanie komputerów kwantowych to poważne wyzwanie technologiczne, które prawdopodobnie będzie wymagało nowych badań w dziedzinie fizyki i będzie wiązało się poważnymi pracami inżynieryjnymi w nadchodzących latach, dodaje profesor David Lucas z UK Quantum Computing and Simulation Lab.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się zmierzyć spin elektronu w materiale. Osiągnięcie uczonych z Uniwersytetów w Bolonii, Wenecji, Mediolanie, Würzburgu oraz University of St. Andrews, Boston College i University of Santa Barbara może zrewolucjonizować sposób badania i wykorzystania kwantowych materiałów w takich dziedzinach jak biomedycyna, energia odnawialna czy komputery kwantowe. Pomiar spinu w kontekście topologii materiału, w którym był mierzony, był możliwy dzięki wykorzystaniu promieniowania synchrotronowego oraz nowoczesnym technikom modelowania zachowania materii.
      Profesor Domenico di Sante z Uniwersytetu w Bolonii wyjaśnia: Na zachowanie elektronów w materiałach mają wpływ pewne właściwości kwantowe, determinujące ich spin w materiale, w którym się znajdują. Tak jak na tor ruchu światła we wszechświecie ma wpływ obecność gwiazd, ciemnej materii czy czarnych dziur, które zaginają czasoprzestrzeń.
      Właściwości elektronu znamy od dawna, jednak dotychczas nikt nie bezpośrednio nie zmierzył „topologicznego spinu” elektronu. Uczeni z Włoch, Niemiec, Wielkiej Brytanii i USA wykorzystali efekt znany jako dichroizm kołowy. Zjawisko to polega na różnej absorpcji przez substancje światła spolaryzowanego kołowo prawo- i lewoskrętnie. W swoich badaniach skupili się na metalach kagome. To materiały, w których atomy tworzą – znany z tradycyjnego japońskiego koszykarstwa kagome – wzór składający się z sieci trójkątów o wspólnych wierzchołkach. Ta nietypowa geometria atomów powoduje, że elektrony zachowują się w takim materiale w sposób nietypowy, co pozwala badać niezwykłe zjawiska kwantowe. Metale kagome służą m.in. do badań nad nadprzewodnictwem wysokotemperaturowym. Pierwsze eksperymenty z nimi przeprowadzono w USA w 2018 roku.
      Teraz dwuwarstwowe metale kagome XV6Sn6 – gdzie X oznacza pierwiastek ziem rzadkich, tutaj były to terb, skand i holm – posłużyły do badania topologicznego spinu elektronu. Było to możliwe dzięki połączeniu eksperymentu z analizą teoretyczną. Teoretycy przeprowadzili najpierw złożone symulacje kwantowe na potężnych superkomputerach i poinstruowali eksperymentatorów, w którym miejscu materiału powinni mierzyć dichroizm kołowy, wyjaśnia Di Sante.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
      Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
      Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
      Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
      Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
      Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
      Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
      Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
      Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
      Więcej o unimonie można przeczytać na łamach Nature Communications.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dwie amerykańskie grupy badawcze stworzyły – niezależnie od siebie – pierwsze kwantowe procesory, w których rolę kubitów odgrywają atomy. To potencjalnie przełomowe wydarzenie, gdyż oparte na atomach komputery kwantowe mogą być łatwiej skalowalne niż dominujące obecnie urządzenia, w których kubitami są uwięzione jony lub nadprzewodzące obwody.
      W 2020 roku firma Heoneywell pochwaliła się, że jej komputer na uwięzionych jonach osiągnął największą wartość „kwantowej objętości”. Tego typu maszyny, mają tę zaletę, że jony w próżni jest dość łatwo odizolować od zakłóceń termicznych, a poszczególne jony w chmurze są nieodróżnialne od siebie. Problemem jest jednak fakt, że jony wchodzą w silne interakcje, a do manipulowania nimi trzeba używać pól elektrycznych, co nie jest łatwym zadaniem.
      Z drugiej zaś strony mamy kwantowe maszyny wykorzystujące obwody nadprzewodzące. Za najpotężniejszy obecnie procesor kwantowy z takimi obwodami uznaje się 127–kubitowy Eagle IBM-a. Jednak wraz ze zwiększaniem liczby kubitów, urządzenia tego typu napotykają coraz więcej problemów. Każdy z kubitów musi być w nich wytwarzany indywidualnie, co praktycznie uniemożliwia wytwarzanie identycznych kopii, a to z kolei – wraz z każdym dodanym kubitem – zmniejsza prawdopodobieństwo, że wynik obliczeń prowadzonych za pomocą takiego procesora będzie prawidłowy. Jakby jeszcze tego było mało, każdy z obwodów musi być schłodzony do niezwykle niskiej temperatury.
      Już przed sześcioma laty zespoły z USA i Francji wykazały, że możliwe jest przechowywanie kwantowej informacji w atomach, którymi manipulowano za pomocą szczypiec optycznych. Od tamtego czasu Amerykanie rozwinęli swój pomysł i stworzyli 256-bitowy komputer kwantowy bazujący na tej platformie. Jednak nikt dotychczas nie zbudował pełnego obwodu kwantowego na atomach.
      Teraz dwa niezależne zespoły zaprezentowały procesory bazujące na takich atomach. Na czele grupy z Uniwersytetu Harvarda i MTI stoi Mikhail Lukin, który w 2016 roku opracował ten oryginalny pomysł. Zespołem z University of Wisonsin-Madison, w pracach którego biorą też udział specjaliści z firm ColdQuant i Riverlane, kieruje zaś Mark Saffman. Zespół Lukina wykorzystał atomy rubidu, zespół Saffmana użył zaś cezu.
      Jeśli mamy obok siebie dwa atomy w stanie nadsubtelnym, to nie wchodzą one w interakcje. Jeśli więc chcemy je splątać, jednocześnie wzbudzamy je do stanu Rydberga. W stanie Rydberga wchodzą one w silne interakcje, a to pozwala nam je szybko splątać. Później możemy z powrotem wprowadzić je w stan nadsubtelny, gdzie można nimi manipulować za pomocą szczypiec optycznych, wyjaśnia Dolev Bluvstein z Uniwersytetu Harvarda.
      Grupa z Harvarda i MIT wykorzystała stan nadsubtelny do fizycznego oddzielenia splątanych atomów bez spowodowania dekoherencji, czyli utraty kwantowej informacji. Gdy każdy z atomów został przemieszczony na miejsce docelowe został za pomocą lasera splątany z pobliskim atomem. W ten sposób naukowcy byli w stanie przeprowadzać nielokalne operacje bez potrzeby ustanawiania specjalnego fotonicznego lub atomowego łącza do przemieszczania splątania w obwodzie.
      W ten sposób uruchomiono różne programy. Przygotowano m.in. kubit logiczny, składający się z siedmiu kubitów fizycznych, w którym można było zakodować informacje w sposób odporny na pojawienie się błędów. Naukowcy zauważają, że splątanie wielu takich logicznych kubitów może być znacznie prostsze niż podobne operacje na innych platformach. Istnieje wiele różnych sztuczek, które są stosowane by splątać kubity logiczne. Jednak gdy można swobodnie przesuwać atomy, to jest to bardzo proste. Jedyne, co trzeba zrobić to stworzyć dwa niezależne kubity logiczne, przesunąć je i przemieszać z innymi grupami, wprowadzić za pomocą lasera w stan Rydberga i utworzyć pomiędzy nimi bramkę, stwierdza Dluvstein. Te technika, jak zapewnia uczony, pozwala na przeprowadzenie korekcji błędów i splątania pomiędzy kubitami logicznymi w sposób niemożliwy do uzyskania w obwodach nadprzewodzących czy z uwięzionymi jonami.
      Grupa z Wisconsin wykorzystała inne podejście. Naukowcy nie przemieszczali fizycznie atomów, ale za pomocą lasera manipulowali stanem Rydberga i przemieszczali splątanie po macierzy atomów. Mark Saffman podaje przykład trzech kubitów ustawionych w jednej linii. Za pomocą laserów oświetlamy kubit po lewej i kubit centralny Zostają one wzbudzone do stanu Rydberga i splątane. Następnie oświetlamy atom centralny oraz ten po prawej. W ten sposób promienie laserów kontrolują operacje na bramkach, ale tym, co łączy kubity są interakcje zachodzące w stanach Rydberga.
      Grupa Saffmana wykorzystała opracowaną przez siebie technikę do stworzenia składających się z sześciu atomów stanów Greenbergera-Horne'a-Zeilingera. Wykazali też, że ich system może działać jak kwantowy symulator służący np. do szacowania energii molekuły wodoru. Dzięki temu, że nie trzeba było przesuwać atomów, zespół z Wisconsin osiągnął kilkaset razy większe tempo pracy niż zespół z Harvarda i MIT, jednak ceną była pewna utrata elastyczności. Saffman uważa, że w przyszłości można będzie połączyć oba pomysły w jeden lepszy system.
      Na razie oba systemy korzystają z niewielkiej liczby kubitów, konieczne jest też wykazanie wiarygodności obliczeń oraz możliwości ich skalowania. Chris Monroe, współtwórca pierwszego kwantowego kubita – który oparty był na uwięzionych jonach – uważa, że obie grupy idą w dobrym kierunku, a kubity na atomach mogą osiągnąć wiarygodność 99,9% i to bez korekcji błędów. Obecnie osiągamy taki wynik na uwięzionych jonach i – mimo że technologia wykorzystania atomów jest daleko z tyłu – nie mam wątpliwości, że w końcu osiągną ten sam poziom, stwierdza.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...