Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Dwutlenek tytanu to jeden z „cudownych" materiałów współczesnej technologii. Przydaje się w roli katalizatora w wielu procesach chemicznych, stosowany jest także jako środek antybakteryjny i domieszkowany do farb, czy nawet w „cudownych" szczoteczkach do zębów, nie wymagających pasty. Jednym z ciekawszych zastosowań jest jego zdolność do neutralizowania szkodliwych tlenków azotu, na przykład emitowanych przez samochody. Naukowcy z Uniwersytetu w Eindhoven odkryli, jak domieszkować dwutlenek tytanu (TiO2) do betonu, uzyskując drogi które same neutralizują niemal połowę spalin samochodowych.

 

Beton nasz powszedni

 

Te same wątpliwości dotyczą innych nanocząstek, jakie bada doktor Anil Kumar Suresh wraz ze współpracownikami z Biological and Nanoscale Systems Group w amerykańskim Oak Ridge National Laboratory. Na podobnych zasadach stosuje się bowiem nanocząstki złota (Ag), tlenku cynku (ZnO) i dwutlenku ceru (CeO2). Dr Suresh tłumaczy, że szkodliwość nanocząstek jest trudna do określenia, zależy bowiem od bardzo wielu czynników: rozmiaru, kształtu, technologii produkcji i zastosowanych chemikaliów, związków chemicznych, które mogą pozostawać na ich powierzchni. Oszacowanie szkodliwości materiału pochodzącego od jednego producenta nic nam nie mówi o właściwościach formalnie takiego samego materiału, ale pochodzącego z innej firmy. Producenci tymczasem nie udzielają informacji o przeznaczeniu produktów, sposobach produkcji, czy transportu.

W przypadku dwutlenku tytanu większość rodzajów nanocząsteczek jest szkodliwa, z wyjątkiem tych wytwarzanych metodami biologicznymi (przez grzyby lub bakterie, które prawdopodobnie pokrywają nanocząstki ochronnymi proteinami). Jednak wszystkie komercyjnie dostępne nanocząstki TiO2 produkowane są metodami chemicznymi. Co więcej, promieniowanie radiowe zwiększa ich szkodliwość nawet od dwudziestu do czterdziestu razy.

Tymczasem domieszkowanie materiałów dwutlenkiem tytanu i innymi katalizatorami jest coraz bardziej powszechne, a nie ma właściwie żadnych badań nad długotrwałymi efektami ich stosowania. Nawet biorąc za dobrą monetę zapewnienia producenta, że mikrocząstki TiO2 nie mogą uwolnić się z materiału, pozostaje zbyt wiele niewiadomych. A tymczasem może się okazać, że długofalowe efekty okażą się brzemienne w skutki, jak to ostatnio dzieje się z ponoć „całkowicie bezpiecznym" Bisfenolem A.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Doktor Juan Carlos Colmenares z Instytutu Chemii Fizycznej Polskiej Akademii Nauk pracuje nad robiącą niezwykłe wrażenie metodą oczyszczania wody i odzyskiwania z niej pożytecznych związków chemicznych. Moja praca przypomina trochę alchemię. Biorę ‚magiczny proszek’, wsypuję do brudnej wody, mieszam i wystawiam na słońce. Po paru godzinach mam czystą wodę plus substancje, z których można zrobić użyteczne rzeczy, na przykład leki - mówi uczony.
      Już od końca lat 60. prowadzi się badania nad fotochemiczną degradacją zanieczyszczeń. W IChF PAN badane są fotokatalizatory oraz takie warunki reakcji, by mogła ona przebiegać bez udziału specjalistycznej aparatury i samoczynnie zatrzymywała się na wybranym etapie. Dzięki fotokatalizatorom zawierającym dwutlenek tytanu uczeni uzyskali już z zanieczyszczonej wody np. kwasy karboksylowe używane w farmacji i przemyśle spożywczym. Możliwy jest też rozkład biomasy do najprostszych substancji, np. wodoru czy dwutlenku węgla.
      W warunkach laboratoryjnych reakcje biomasy z udziałem fotokatalizatorów już teraz wyglądają obiecująco. W tym roku przystąpimy do pierwszych testów w pilotażowych fotoreaktorach biochemicznych Uniwersytetu w Kordobie w Hiszpanii. Reakcje będą tam przebiegały w cieczach o objętościach liczonych w dziesiątkach litrów - mówi Colmenares.
      Reakcje, nad którymi pracuje Hiszpan, zachodzą przy zwykłym ciśnieniu atmosferycznym, dobrym nasłonecznieniu i przy temperaturze około 30 stopni Celsjusza. Takie warunki wystepują naturalnie w wielu krajach na całym świecie.
    • przez KopalniaWiedzy.pl
      Materiał opracowany w Oak Ridge National Laboratory może posłużyć do stworzenia bardziej pojemnych i bezpiecznych baterii, które będzie można ładować szybciej niż obecne baterie litowo-jonowe.
      Zespół pracujący pod kierunkiem Hansana Liu, Gilberta Browna i Paransa Paranthamana odkrył, że dzięki tlenkowi tytanu można zwiększyć pojemność baterii litowo-jonowych, a przy okazji skrócić czas ich ładowania. W ciągu sześciu minut możemy załadować baterie do połowy pojemności, podczas gdy tradycyjne urządzenie załaduje się w tym czasie do 10% pojemności - mówi Liu.
      Stop z ORNL jest też bardziej pojemny niż obecnie wykorzystywany tytanat litu. Pozwala bowiem na przechowanie 256, a nie jak dotychczas 165, miliamperogodzin na gram. Ponadto tlenki są bardzo bezpieczne i trwałe w użytkowaniu, co czyni nowy materiał świetnym rozwiązaniem np. dla pojazdów elektrycznych.
      Głównym składnikiem materiału jest nowa architektura dwutlenku tytanu, znana jako mezoporowe mikrosfery TiO2-B, która składa się z mikrokanalików i porów pozwalających na swobodny przepływ jonów, co umożliwia szybkie ładowanie i rozładowywanie baterii. Tlenek tytanu został tutaj wzbogacony polimorficznym brązem.
      Jak twierdzi Liu, nowy materiał może być tani i nadaje się do produkcji przy użyciu współcześnie wykorzystywanych technik.
    • przez KopalniaWiedzy.pl
      W Stanach Zjednoczonych powstają dwa niezwykle wydajne superkomputery. Obie maszyny mają osiągnąć wydajność 20 petaflopsów i mogą trafić na listę TOP500 w czerwcu 2012 roku. Obecnie najbardziej wydajny superkomputer to chiński Tianhe-1A, który jest w stanie wykonać 2,566 petaflopa w ciągu sekundy.
      Pierwszy z superkomputerów powstaje w Oak Ridge National Laboratory (ORNL), które obecnie jest w posiadaniu m.in. maszyny Jaguar, drugiego pod względem wydajności superkomputera. Komputer o podobnej mocy buduje też IBM na zlecenie Lawrence Livermore National Laboratory. Ma on zostać dostarczony zamawiającemu już w przyszłym roku, a pełną moc osiągnie w roku 2012.
      Obecnie jest zbyt wcześnie, by wyrokować, czy powstające amerykańskie maszyny obejmą prowadzenie na liście TOP500. Superkomputery to niezwykle przydatne narzędzia badawcze i bardzo interesują się nimi Chiny. Amerykańscy eksperci twierdzą, że Państwo Środka ma ambicję budowy superkomputera opartego wyłącznie na rodzimej technologii i może zrealizować ten cel w ciągu 12-18 miesięcy. Specjaliści przypuszczają, że projektowana maszyna ma charakteryzować się mocą ponad 1 PFlops. Wiadomo, że Chińczycy już używają własnej technologii. Najpotężniejszy superkomputer świata Tianhe-1A korzysta przede wszystkim z układów Intela oraz Nvidii, ale zastosowano w nim również procesory FeiTeng-1000. To 8-rdzeniowe układy korzystające z architektury Sparc. Są one wykorzystywane do zarządzania węzłami superkomputera. Wiadomo też, że Chiny dysponują własnymi technologiami przesyłu danych szybszymi od otwartego InfiniBand. Wciąż jednak nie dorównują one wydajnością zamkniętym standardom oferowanym przez amerykańskie firmy.
      Jeremy Smith, dyrektor Centrum Biofizyki Molekularnej w ORNL mówi, że bardzo cieszy go konkurencja, gdyż zwiększające się zainteresowanie superkomputerami przyczynia się do ich rozwoju. W konkurencji z innymi krajami wszyscy wygrywają - dlatego bardzo mi się to podoba - mówi Smith. Jak wspomina, gdy w roku 2002 pojawił się japoński Earth Simulator zaszokował on środowisko, a National Research Council w swoim raporcie stwierdził, że był to dzwonek alarmowy, pokazujący, iż możemy nie tylko stracić przewagę nad konkurencją, ale również, co ważniejsze, zdolność do osiągnięcia własnych celów.
      Naukowcy z niecierpliwością czekają na pojawienie się komputerów pracujących w eksaskali. Maszyna o wydajności 1 eksaflopsa będzie wykonywała w ciągu sekundy trylion (1018) operacji zmiennoprzecinkowych. To dla nauki oznacza skok jakościowy. System eksaskalowy pozwoli bowiem na dokładne symulowanie pojedynczej komórki. Każdy atom będzie tam reprezentowany - mówi Smith. To z kolei będzie miało kolosalne znaczenie dla rozwoju medycyny, biologii i nauk pokrewnych.
      Pierwsze systemy eksaskalowe mogą pojawić się jeszcze przed rokiem 2020.
    • przez KopalniaWiedzy.pl
      Elektryczną szczoteczkę do zębów każdy już widział, wielu używało. Informacja o szczoteczce do zębów na baterie słoneczne nie wzbudzi też już wielkiego zainteresowania, chyba że usłyszymy, że taka szczoteczka nie potrzebuje pasty do zębów ani żadnego środka czyszczącego. Co, proszę, jak to ma niby działać?
      Pomysł rodem z kreskówki Jetsonowie nie jest jednak żartem. Dr Kunio Komiyama, stomatolog i profesor emeritus na kanadyjskim University of Saskatchewan oraz jego kolega z uczelni, Gerry Uswak, opracowali szczoteczkę czyszczącą zęby na zasadzie chemicznej reakcji, nazwanej dezynfekcją fotokatalityczną. Pierwszy prototyp, oparty na reakcji dwutlenku tytanu na światło, powstał już piętnaście lat temu, nowa wersja nazwana Soladey-J3X, ma być dwukrotnie efektywniejsza.
      Szczoteczka wygląda całkiem zwyczajnie, poza niewielkim ogniwem słonecznym w rączce, któremu wystarcza niewielka ilość światła, porównywalna do tej, która zasila małe kalkulatory. Wyłapywane przez ogniwo elektrony płyną przewodem do główki, gdzie w ustach zachodzi reakcja z kwasami zawartymi w ślinie. Reakcja rozbija płytkę kamienia nazębnego oraz zabija bakterie, między innymi te powodujące choroby przyzębia.
      Testy laboratoryjne potwierdziły skuteczność eliminowania dwóch gatunków bakterii. W tej chwili trwają testy porównujące skuteczność Soladey-J3X z tradycyjną pastą do zębów, ale do komercyjnej produkcji wynalazku szykuje już się pierwsza firma - japoński koncern Shiken.
    • przez KopalniaWiedzy.pl
      W roku 2002 Paul Koehler wraz z kolegami z Oak Ridge Electron Linear Accelerator (ORELA) mierzyli rezonans neutronów w czterech różnych izotopach platyny. Uzyskane wyniki były inne od oczekiwanych. Dodatkowe, niedawno przeprowadzone badania sugerują, że obowiązujące obecnie teorie dotyczące struktury jądra atomowego mogą być błędne. Teorie te mówią bowiem, że nukleony powinny poruszać się chaotycznie. Tymczasem badacze z Oak Ridge National Laboratory odkryli, że ich ruch jest regularny. Nowe badania sugerują, że 200 nukleonów w jądrze platyny działa zgodnie a nie chaotycznie. Biorąc pod uwagę dość duże energie i wielką liczbę nukleonów, takie kolektywne działanie jest niespodziewane i nie potrafimy go wyjaśnić - napisali badacze.
      Ich zdaniem, eksperymenty pozwalają stwierdzić z 99,997% prawdopodobieństwem, że współczesna teoria o macierzach przypadkowych jest nieprawdziwa w odniesieniu do badanych jąder.
      Jednak by potwierdzić te odkrycia należy przeprowadzić eksperymenty na innych jądrach niż jądra platyny. Może bowiem okazać się, że tylko platyna wykazuje niespotykane właściwości niepasujące do teorii.
      Problem jednak w tym, że ze względu na oszczędności budżetowe ORELA został zamknięty i nie wiadomo, czy projekt kiedykolwiek ponownie ruszy. Jak informuje Koehler, obecnie jedynym miejscem na świecie, gdzie można przeprowadzić takie eksperymenty, jakie prowadził jego zespół, jest belgijski Geel Electron Linear Accelerator (GELINA).
      Badania Koehlera mogą mieć praktyczne zastosowanie w energetyce jądrowej. Zajmujący się nią specjaliści polegają bowiem na teorii o macierzach przypadkowych do oceny prawdopodobieństwa ucieczki neutronów, a zatem do wyliczenia właściwości osłon dla reaktorów i składowisk paliwa.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...