Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

1000-rdzeniowe procesory są możliwe

Rekomendowane odpowiedzi

Podczas konferencji SC2010 inżynier Intela Timothy Mattson poinformował, że jego firma dysponuje technologią, która pozwala na zbudowanie procesora składającego się z 1000 rdzeni.

Jest to możliwe, gdyż opracowana wcześniej 48-rdzeniowa architektura o nazwie Single Chip Cloud Computer okazała się bardzo łatwo skalowalna. Można ją skalować do 1000 rdzeni. Mogę dodawać więcej i więcej rdzeni- stwierdził Mattson. Jak poinformował, dopiero po przekroczeniu liczby około 1000 rdzeni pojawiają się problemy z połączeniem tak wielu jednostek, które wpływają negatywnie na wydajność całego systemu.

Aby wyprodukować układ z tak olbrzymią liczbą rdzeni należy poradzić sobie z problemem spójności pamięci podręcznej. Intel korzysta z architektury, w której każdy z rdzeni ma taki sam dostęp do pamięci cache. Spójność zapewniana jest przez cały szereg protokołów. Jednak w miarę dodawania kolejnych rdzeni liczba połączeń staje się tak wielka, że znacznie obciążają one układ, prowadząc w końcu do sytuacji, w której po dodaniu kolejnych rdzeni wydajność całej kości spada. Granicę, poza którą tak się dzieje nazwano ścianą spójności.

Zdaniem Mattsona, rozwiązaniem problemu jest rezygnacja ze spójności cache'u i opracowanie technik, dzięki którym rdzenie będą przesyłały dane pomiędzy sobą.

Powstały już pierwsze układy scalone, w których zastosowano pomysły Mattsona i jego współpracowników. Dla uproszczenia i obniżenia kosztów wykorzystano w nich rdzenie procesora Pentium. Na obecnym stadium rozwoju nie chodziło bowiem o osiągnięcie dużej wydajności układu, ale zbadanie możliwości skalowania procesora. Każdy z rdzeniw wyposażono w specjalny interfejs, który dzieli dane na pakiety i przesyła je do rutera. Ponadto każdy z nich ma do dyspozycji 16-kilobajtowy bufor RAM, służący do przekazywania danych z innych rdzeni.

Przetestowano najróżniejsze konfiguracje tego typu układów, wraz z taką, która pozwoliła na uruchomienie w każdym z rdzeni 48-rdzeniowej kości osobnego systemu Linux. Mattson z kolegami opracował też bibliotekę API, która ma ułatwić przekazywanie danych pomiędzy rdzeniami. Przeprowadzone testy wykazały, że biblioteka RCCE jest równie wydajna jak protokół TCP/IP na wspomnianym linuksowym klastrze.

Nasze wstępne prace miały wykazać, że procesor SCC i jego natywne API jest efektywną platformą dla rozwoju oprogramowania. Spodziewaliśmy się problemów spowodowanych asynchronicznym przesyłaniem informacji, jednak dotychczas ich nie zauważyliśmy - mówi Mattson.

Inżynier zastrzegł jednocześnie, że rozwijany przez niego układ nie znajduje się na oficjalnej "mapie drogowej" Intela i może nigdy nie trafić do masowej produkcji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość derobert

Drogi Mikołaju...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Skoro Win 7 mozna postawić na 486dx to ta cudowna opisana tutaj architektura jest kontrolowanym powrotem do serii procesorów z przed ery pentium tyle ze za przykładem AMD będą łączone w klastry z jakimś układem dzielącym zadania na poszczególne rdzenie do tego kiedyś istniały co-procesory matematyczne (287, 487) więc moze być ciekawie bo powrócą takie języki programowania jak Fortran, Cobol , Pascal a nawet Q-basic.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

..cd    to równiez by tłumaczyło wejście M$ na rynek antywirusowy bo mają sporą bazę wirusów atakujących win 3,11 a pozostałe firmy są za młode aby ją mieć.

Moze i dobrze ze wracają do serii 486 i będą je łączyć w klastry bo wykozystają doświadczenie zdobyte przy budowie serwerów w tamtych czasach (tyle ze teraz tamta ich moc będzie zaklęta w pojedynczej kości procesora z duzą pamięcią wewnętrzną - co było kiedyś wielkim problemem). 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Intel ogłosił, że wybuduje w Polsce supernowoczesny zakład integracji i testowania półprzewodników. Stanie on w Miękini pod Wrocławiem, a koncern ma zamiar zainwestować w jego stworzenie do 4,6 miliarda dolarów. Inwestycja w Polsce to część obecnych i przyszłych planów Intela dotyczących Europy. Firma ma już fabrykę półprzewodników w Leixlip w Irlandii i planuje budowę drugiej w Magdeburgu w Niemczech. W sumie Intel chce zainwestować 33 miliardy euro w fabrykę w Niemczech, zakład badawczo-rozwojowo-projektowy we Francji oraz podobne przedsięwzięcia we Włoszech, Hiszpanii i Polsce.
      Zakład w Polsce ma rozpocząć pracę w 2027 roku. Zatrudnienie znajdzie w nim około 2000 osób, jednak inwestycja pomyślana została tak, by w razie potrzeby można było ją rozbudować. Koncern już przystąpił do realizacji fazy projektowania i planowania budowy, na jej rozpoczęcie będzie musiała wyrazić zgodę Unia Europejska.
      Intel już działa w Polsce i kraj ten jest dobrze przygotowany do współpracy z naszymi fabrykami w Irlandii i Niemczech. To jednocześnie kraj bardzo konkurencyjny pod względem kosztów, w którym istnieje solidna baza utalentowanych pracowników, stwierdził dyrektor wykonawczy Intela, Pat Gelsinger. Przedstawiciele koncernu stwierdzili, że Polskę wybrali między innymi ze względu na istniejącą infrastrukturę, odpowiednio przygotowaną siłę roboczą oraz świetne warunki do prowadzenia biznesu.
      Zakład w Miękini będzie ściśle współpracował z fabryką w Irlandii i planowaną fabryką w Niemczech. Będą do niego trafiały plastry krzemowe z naniesionymi elementami elektronicznymi układów scalonych. W polskim zakładzie będą one cięte na pojedyncze układy scalone, składane w gotowe chipy oraz testowane pod kątem wydajności i jakości. Stąd też będą trafiały do odbiorców. Przedsiębiorstwo będzie też w stanie pracować z indywidualnymi chipami otrzymanymi od zleceniodawcy i składać je w końcowy produkt. Będzie mogło pracować z plastrami i chipami Intela, Intel Foundry Services i innych fabryk.
      Intel nie ujawnił, jaką kwotę wsparcia z publicznych pieniędzy otrzyma od polskiego rządu. Wiemy na przykład, że koncern wciąż prowadzi negocjacje z rządem w Berlinie w sprawie dotacji do budowy fabryki w Magdeburgu. Ma być ona warta 17 miliardów euro, a Intel początkowo negocjował kwotę 6,8 miliarda euro wsparcia, ostatnio zaś niemieckie media doniosły, że firma jest bliska podpisania z Berlinem porozumienia o 9,9 miliardach euro dofinansowania. Pat Gelsinger przyznał, że Polska miała nieco więcej chęci na inwestycję Intela niż inne kraje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od dekad elastyczna elektronika była niewielką niszą. Teraz może być gotowa, by wejść do mainstream'u, stwierdził Rakesh Kumar, lider zespołu, który stworzył plastikowy procesor. O elektronice zintegrowanej w praktycznie każdym przedmiocie, od podkoszulków poprzez butelki po owoce, słyszymy od lat. Dotychczas jednak plany jej rozpowszechnienia są dalekie od realizacji, a na przeszkodzi stoi brak elastycznego, plastikowego, wydajnego i taniego procesora, który można by masowo produkować.
      Wiele przedsiębiorstw próbowało stworzyć takie urządzenie i im się nie udało. Według naukowców z amerykańskiego University of Illinois Urbana-Champaign i specjalistów z brytyjskiej firmy PragmatIC Semiconductor, problem w tym, że nawet najprostszy mikrokontroler jest zbyt złożony, by można go było masowo wytwarzać na plastikowym podłożu.
      Amerykańsko-brytyjski zespół zaprezentował właśnie uproszczony, ale w pełni funkcjonalny, plastikowy procesor, który można masowo produkować bardzo niskim kosztem. Przygotowano dwie wersje procesora: 4- i 8-bitową. Na substracie z 4-bitowymi układami, których koszt masowej produkcji liczyłby się dosłownie w groszach, działa 81% procesorów. To wystarczająco dobry wynik, by wdrożyć masową produkcję.
      Procesory wyprodukowano z cienkowarstwowego tlenku indowo-galowo-cynkowego (IGZO), dla którego podłożem był plastik. Innowacja polegała zaś na stworzeniu od podstaw nowej mikroarchitektury – Flexicore.Musiała być maksymalnie uproszczona, by sprawdziła się w na plastiku. Dlatego zdecydowano się na układy 4- i 8-bitowe zamiast powszechnie wykorzystywanych obecnie 16- i 32-bitowych. Naukowcy rozdzielili moduły pamięci przechowującej instrukcje od pamięci przechowującej dane. Zredukowano również liczbę i stopień złożoności instrukcji, jakie procesor jest w stanie wykonać. Dodatkowym uproszczeniem jest wykonywanie pojedynczej instrukcji w jednym cyklu zegara.
      W wyniku wszystkich uproszczeń 4-bitowy FlexiCore składa się z 2104 podzespołów. To mniej więcej tyle samo ile tranzystorów posiadał procesor Intel 4004 z 1971 roku. I niemal 30-krotnie mniej niż konkurencyjny PlasticARM zaprezentowany w ubiegłym roku. Uproszczenie jest więc ogromne. Stworzono też procesor 8-bitowy, jednak nie sprawuje się on tak dobrze, jak wersja 4-bitowa.
      Obecnie trwają testy plastikowych plastrów z procesorami. Są one sprawdzane zarówno pod kątem wydajności, jak i odporności na wyginanie. Jednocześnie twórcy procesorów prowadzą prace optymalizacyjne, starając się jak najlepiej dostosować architekturę do różnych zadań. Jak poinformował Kumar, badania już wykazały, że można znacznie zredukować pobór prądu, nieco zbliżając do siebie poszczególne bramki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zespół naukowców, inżynierów i marynarzy ze statku badawczego Neil Armstrong należącego do US Navy, którego operatorem jest Woods Hole Oceanographic Institution (WHOI), pobrał 11,5-metrowy rdzeń osadów z najgłębszej części Rowu Portorykańskiego. Osady zostały pozyskane z głębokości ponad 8000 metrów. To rekord po względem głębokości, z jakiej pozyskano rdzeń na Atlantyku, a może i rekord w ogóle.
      Zespołowi naukowemu z WHOI, Uniwersytetu w Monachium i kilku amerykańskich uniwersytetów, przewodzili profesor Steven D'Hondt oraz doktor Robert Pockalny. Celem wyprawy badawczej, która prowadzona była w lutym i marcu bieżącego roku, było lepsze zrozumienie adaptacji mikroorganizmów do życia w morskich osadach na różnych głębokościach. Dlatego też uczeni pobierali próbki zarówno z głębokości 50 metrów, jak i około 8358 metrów. Pobieraliśmy próbki, gdyż chcemy się dowiedzieć, jak mikroorganizmy żyjące na dnie morskim radzą sobie z ciśnieniem. Naszym ostatecznym celem jest zrozumienie interakcji pomiędzy organizmami żyjącymi w ekstremalnych środowiskach a ich otoczeniem, wyjaśnia D'Hondt.
      Pobranie rdzenia z tak dużej głębokości było możliwe dzięki specjalnemu systemowi opracowanemu już w 2007 roku przez Jima Brodę dla statku badawczego Knorr. Po tym, jak Knorr zakończył służbę, jego system został zaadaptowany do krótszego Neila Armstronga.
      Po zakończeniu obecnych badań system do pozyskiwania rdzeni z tak dużej głębokości zostanie przekazany OSU Marine Sediment Sampling Group. To zespół finansowany przez Narodową Fundację Nauki, który pomaga amerykańskiej społeczności akademickiej w pobieraniu próbek osadów morskich. Dzięki temu system będzie dostępny dla całej amerykańskiej floty statków badawczych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Intel potwierdził, że kosztem ponad 20 miliardów dolarów wybuduje nowy kampus w stanie Ohio. W skład kampusu wejdą dwie supernowoczesne fabryki półprzewodników, gotowe do produkcji w technologii 18A. To przyszły, zapowiadany na rok 2025 proces technologiczny Intela, w ramach którego będą powstawały procesory w technologii 1,8 nm. Budowa kampusu rozpocznie się jeszcze w bieżącym roku, a produkcja ma ruszyć w 2025 roku.
      Intel podpisał też umowy partnerskie z instytucjami edukacyjnymi w Ohio. W ich ramach firma przeznaczy dodatkowo 100 milionów dolarów na programy edukacyjne i badawcze w regionie. "To niezwykle ważna wiadomość dla stanu Ohio. Nowe fabryki Intela zmienią nasz stan, stworzą tysiące wysoko płatnych miejsc pracy w przemyśle półprzewodnikowym", stwierdził gubernator Ohio, Mike DeWine.
      To największa w historii Ohio inwestycja dokonana przez pojedyncze prywatne przedsiębiorstwo. Przy budowie kampusu zostanie zatrudnionych 7000 osób, a po powstaniu pracowało w nim będzie 3000osób. Ponadto szacuje się, że inwestycja długoterminowo stworzy dziesiątki tysięcy miejsc pracy w lokalnych firmach dostawców i partnerów.
      Kampus o powierzchni około 4 km2 powstanie w hrabstwie Licking na przedmieściach Columbus. Będzie on w stanie pomieścić do 8 fabryk. Intel nie wyklucza, że w sumie w ciągu dekady zainwestuje tam 100 miliardów dolarów, tworząc jeden z największych na świecie hubów produkcji półprzewodników.
      Tak olbrzymia inwestycja przyciągnie do Ohio licznych dostawców produktów i usług dla Intela. Będzie ona miała daleko idące konsekwencje. Fabryka półprzewodników różni się od innych fabryk. Stworzenie tak wielkiego miejsca produkcji półprzewodników jest jak budowa małego miasta, pociąga za sobą powstanie tętniącej życiem społeczności wspierających dostawców usług i produktów. [...] Jednak rozmiar ekspansji Intela w Ohio będzie w dużej mierze zależał od funduszy w ramach CHIPS Act, stwierdził wiceprezes Intela ds. produkcji, dostaw i operacji, Keyvan Esfarjani.
      Nowe fabryki mają w 100% korzystać z energii odnawialnej, dostarczać do systemu więcej wody niż pobiera oraz nie generować żadnych odpadów stałych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Osiem lat po przeszczepie komórek węchowych do kanału kręgowego pacjentki z całkowitym uszkodzeniem rdzenia lekarze usunęli stamtąd masę. Przeszczep przeprowadzano, licząc na przywrócenie funkcji sensorycznych i ruchowych.
      Jak tłumaczą autorzy raportu z Journal of Neurosurgery: Spine, komórki węchowe zlokalizowane są w stropie przewodów nosowych, a także w górnej części przegrody nosowej koło blaszki perforowanej i na przyśrodkowej powierzchni górnej małżowiny nosowej. Śluzówka znajduje się w niższej części jamy nosowej. Poza neuronami węchowymi błona węchowa zawiera komórki progenitorowe oraz makroglej OEC (od ang. olfactory ensheathing cells); podczas badań laboratoryjnych oraz in vivo wykazano, że oba rodzaje komórek wspomagają naprawę uszkodzonego rdzenia.
      Opisywana pacjentka przeżyła w wieku 18 lat wypadek, w wyniku którego doznała urazu - złamania z przemieszczeniem - na poziomie 10. i 11. kręgu piersiowego . Mimo operacyjnej stabilizacji kręgosłupa doszło do paraplegii. Trzy lata później, mając nadzieję na odzyskanie czucia i funkcji motorycznych w nogach, kobieta przeszła poza granicami USA autoprzeszczep błony węchowej (umieszczono ją w miejscu uszkodzenia). Osiem lat po eksperymentalnej terapii chora zgłosiła się do Szpitali i Klinik Uniwersytetu Iowa, uskarżając się na ból w środkowej i dolnej części pleców. Badanie neurologiczne nie wykazało klinicznej poprawy po implantacji, lecz obrazowanie ujawniło masę zlokalizowaną koło rdzenia. To ona powodowała ból.
      Analiza wyciętej zmiany ujawniła, że w środku znajdowały się drobne niedziałające gałęzie nerwowe. Mając to na uwadze, lekarze stwierdzili, że rozwinęły się one z nerwowych komórek progenitorowych. Okazało się również, że większość masy wypełniały cysty wyścielone śluzówką układu oddechowego, a także gruczołami podśluzówkowymi i komórkami kubkowymi. W masie występowała poza tym duża ilość materiału przypominającego śluz. Jego akumulacja wywołała objawy pacjentki.
      Amerykanie dywagują, że masa rozwinęła się, bo zamiast wyekstrahować i oczyścić OEC, kobiecie wszczepiono po prostu fragment błony węchowej.
      Naukowcy podkreślają, że rzadki przypadek komplikacji nie powinien zniechęcać do prowadzenia dalszych badań.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...