Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Selerowy wspomagacz pamięci
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W przebiegu chorób Alzheimera czy Parkinsona w neuronach tworzą się splątki neurofibrynalne, patologiczne agregacje białek. Dotychczas sądzono, że komórki mikrogleju sprzątają splątki dopiero wówczas, gdy zostaną uwolnione z komórki po śmierci neuronu. Badania przeprowadzone przez naukowców z Instytutu Biologii Wieku im. Maxa Plancka wykazały, że mikroglej tworzy niewielkie rurki połączone z komórkami nerwowymi i za pomocą tych rurek usuwa splątki, zanim wyrządzą one neuronowi szkodę.
To jednak nie wszystko. Za pomocą rurek mikroglej wysyła do neuronów w których pojawiły się splątki, zdrowe mitochondria umożliwiające komórkom lepsze funkcjonowanie pomimo choroby. Jesteśmy podekscytowani tym odkryciem i jego potencjalnymi zastosowaniami w celu poprawy funkcjonowania neuronów za pomocą mikrogleju, mówi współautor badań Frederik Eikens.
Uczeni odkryli też, że mutacje genetyczne w mikrogleju wpływają na tworzenie i działanie tych rurek. Mutacje takie zwiększają ryzyko wystąpienia chorób neurodegeneracyjnych, co sugeruje, że zaburzenia tworzenia „rurek tunelowania” jest jednym z czynników rozwoju chorób neurodegeneracyjnych. Na następnym etapie badań skupimy się na zrozumieniu, jak te rurki powstają i spróbujemy opracować metody zwiększenia procesu ich generowania w czasie choroby, dodaje Lena Wischhof.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Już pojedyncza sesja ćwiczeń wystarczy, by zwiększyć aktywację obwodów mózgowych związanych z pamięcią, w tym hipokampa, który kurczy się z wiekiem.
Dotąd udało się wykazać, że regularne ćwiczenia mogą zwiększać objętość hipokampa. Nasze badanie uzupełnia wiedzę na ten temat i pokazuje, że pojedyncze sesje ćwiczeń [ang. acute exercise] także mogą wpłynąć na ten ważny obszar mózgu - podkreśla dr J. Carson Smith ze Szkoły Zdrowia Publicznego Uniwersytetu Maryland.
Zespół Smitha mierzył za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) aktywność mózgu 26 zdrowych ochotników w wieku 55-85 lat, którzy mieli wykonywać zadanie pamięciowe (identyfikowali sławne i "zwykłe" nazwiska). Co istotne, zapamiętywanie sławnych nazwisk aktywuje sieć neuronalną związaną z pamięcią semantyczną, która pogarsza się z wiekiem.
Test przeprowadzano 2-krotnie na oddzielnych wizytach w laboratorium: 1) pół godziny po sesji umiarkowanie intensywnych ćwiczeń (70% maksymalnego wysiłku) na rowerze stacjonarnym albo 2) po okresie odpoczynku.
Sesja ćwiczeń wiązała się z zachodzącą w odpowiednim momencie większą aktywacją pamięci semantycznej w zakręcie czołowym środkowym, zakręcie skroniowym dolnym, zakręcie skroniowym środkowym i zakręcie wrzecionowatym. Widoczna była także zwiększona obustronna aktywacja hipokampa.
[...] Pojedyncze sesje ćwiczeń mogą wpływać na poznawcze obwody neuronalne w korzystny sposób, który sprzyja długoterminowym adaptacjom i przyczynia się do zwiększonej integralności/lepszego działania sieci, a więc skuteczniejszego dostępu do wspomnień.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niewydolność serca wiąże się z pogorszeniem funkcjonowania poznawczego i utratą substancji szarej mózgu. Wg autorów badania, utrudnia to realizację zaleceń lekarza, np. pamiętanie o zażywaniu właściwych leków o wyznaczonej porze.
Nasze wyniki pokrywają się z obserwacjami osób z niewydolnością serca, które mają problem z wdrożeniem złożonych zaleceń i sugerują, że wskazane są prostsze instrukcje.
Prof. Osvaldo Almeida z Uniwersytetu Zachodniej Australii zbadał za pomocą testów poznawczych 35 pacjentów z niewydolnością serca (NS), 56 z chorobą niedokrwienną serca (ChNS), która często, ale nie zawsze towarzyszy niewydolności, oraz 64 zdrowe osoby (grupa kontrolna). Objętość istoty szarej w różnych częściach mózgu oceniano za pomocą rezonansu magnetycznego.
Okazało się, że w porównaniu do grupy kontrolnej, pacjenci z niewydolnością serca wypadli gorzej pod względem pamięci bezpośredniej i długotrwałej, a także szybkości reakcji.
W ramach naszego studium ustaliliśmy, że zarówno niewydolność, jak i choroba niedokrwienna serca wiążą się z utratą neuronów w określonych obszarach mózgu, które są ważne dla modulowania emocji i aktywności umysłowej. Jest ona silniej zaznaczona u osób z niewydolnością, ale może także występować u pacjentów z chorobą niedokrwienną bez niewydolności serca. [...] Ludzie z NS i ChNS wykazują, w porównaniu do grupy kontrolnej, drobne deficyty poznawcze. Ponownie są one bardziej widoczne u chorych z NS.
Regiony, w których stwierdzono ubytki substancji szarej, odpowiadają za pamięć, wnioskowanie i planowanie. Istnieją dowody, że optymalizują one wydajność w wymagających wysiłku umysłowego złożonych zadaniach. W konsekwencji utarta komórek nerwowych w tych obszarach może upośledzić [...] pamięć, zdolność modyfikowania zachowania, hamowanie emocjonalne i poznawcze, a także organizację.
O ile nam wiadomo, to pierwsze studium, w którym uwzględniono dodatkową grupę z ChNS, dzielącą czynniki ryzyka z NS. Pozwoliło nam to wykazać, że ubytki poznawcze mogą być niespecyficznym skutkiem narastającego wyniszczenia chorobą sercowo-naczyniową. Analizy ujawniły, że subtelnych deficytów nie da się wyjaśnić upośledzeniem frakcji wyrzutowej lewej komory, powszechnymi schorzeniami współwystępującymi czy markerami biochemicznymi.
W przyszłości Almeida zamierza ustalić, za pośrednictwem jakich szlaków fizjologicznych HF prowadzi do utraty neuronów i pogorszenia funkcjonowania poznawczego i czy zmiany mają charakter postępujący.
-
przez KopalniaWiedzy.pl
Przewidywany wzrost stężenia dwutlenku węgla w oceanach może mieć negatywny wpływ na mózg i układ nerwowy ryb, stwierdził międzynarodowy zespół uczonych. Nasza grupa od wielu lat bada młode ryby, żyjące na rafach koralowych na obszarach, gdzie występuje większe stężenie dwutlenku węgla. Jest dla nas jasne, że dochodzi tam do poważnego zaburzenia działania ich układu nerwowego, co prawdopodobnie zmniejsza ich szanse na przeżycie - mówi profesor Phillip Munday z australijskiego ARC Centre of Excellence for Coral Reef Studies.
Opublikowane w Nature Climate Change wyniki badań wskazują, że zwiększona koncentracja dwutlenku węgla niszczy kluczowe receptory w mózgach ryb, wpływając na ich zachowanie oraz działanie ich zmysłów. Odkryliśmy, że zwiększone stężenie CO2 w oceanie ma bezpośredni wpływ na działanie neuroprzekaźników, co stanowi bezpośrednie i wcześniej nieznane zagrożenie dla życia w oceanach - dodaje uczony.
Naukowcy sprawdzali, jak młode ryby radzą sobie w starciu z drapieżnikami. Stwierdzili, że mimo iż zwiększone stężenie CO2 wpływał też w pewnej mierze na drapieżniki, to wpływ na młode ryby był większy. Wstępne wyniki pokazują, że większe stężenie CO2 w wodzie zaburza zmysł węchu u młodych ryb, co utrudnia im odnalezienie rafy czy wyczucie drapieżnika. Podejrzewamy jednak, że szkody są większe i nie ograniczają się tylko do węchu - powiedział uczony. Badania pokazały też, że ryby mają problem ze słuchem. Wykorzystują one ten zmysł do lokalizowania raf i unikania ich w dzień, a chronienia się w nich w nocy. Ryby z upośledzonym słuchem wpływają za dnia na rafy i częściej padają tam ofiarą drapieżników. Okazało się również, że tracą naturalne instynktowne zachowania takie jak pływanie w ławicy i ciągła zmiana kierunku. To również obniża ich szanse na przeżycie.
Te wszystkie spostrzeżenia spowodowały, że zaczęliśmy podejrzewać, iż uszkodzenia nie dotyczą tylko pojedynczych zmysłów, ale całego układu nerwowego - mówi uczony.
Zespół Mundaya dowiódł, że zwiększone stężenie CO2 wpływa bezpośrednio na receptr GABA-A, odwracając jego normalne funkcjonowanie i prowadząc do zbytniego zwiększenia aktywności niektórych sygnałów nerwowych. Naukowcy podejrzewają, że organizmy morskie są szczególnie wrażliwe na zwiększoną koncentrację CO2, gdyż w naturalny sposób w ich krwi stężenie tego gazu jest niższe niż u organizmów oddychających powietrzem atmosferycznym. Co więcej, u ryb zużywających więcej tlenu, uszkodzenia będą prawdopodobnie większe.
Profesor Munday mówi, że każdego roku w wodach oceanów rozpuszcza się około 2,3 miliarda ton emitowanego przez człowieka CO2. Wykazaliśmy, że przyczyną problemów nie jest tutaj zwiększona kwasowość wód - jak ma to miejsce w przypadku skorupiaków czy planktonu - ale, że to sam dwutlenek węgla niszczy centralny układ nerwowy ryb - stwierdził naukowiec.
Większa obecność CO2 w wodzie może uderzyć w pierwszej kolejności w rybołówstwo, gdyż najważniejszymi dla tej gałęzi gospodarki rybami są te, które zużywają dużo tlenu.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.