Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Ming-Zher Poh, który w ramach studiów podyplomowych bierze udział w pracach Harvard-MIT Health Sciences and Technology wpadł na pomysł wykorzystania lustra do monitorowania pulsu, oddechu i ciśnienia krwi.

Student chce wykorzystać fakt, że każdy z nas posiada w domu lustro i przekonuje, że dane dotyczące podstawowych funkcji organizmu można pobrać zdalnie, bez konieczności przyczepiania do ciała jakichkolwiek czujników.

Jego pomysł polega na połączeniu lustra ze zwykłą kamerą internetową. Rejestruje ona postać stojącą przed lustrem, a dane przekazywane są do komputera. Tam odpowiednie oprogramowanie rozpoznaje twarz i mierzy niewielkie różnice w jasności wywoływane przepływem krwi. Pomaga w tym rozbicie obrazu na składowe RGB.

Poh uważa, że takie nieinwazyjne pomiary przydadzą się zarówno w telemedycynie jak i w badaniach np. noworodków. A lustro w naszym domu mogłoby codziennie przeprowadzać badania i np. wyświetlać w rogu ich wyniki.

Wstępne testy wykazały, że pomysł może zadziałać. Puls mierzony za pomocą kamery porównano z pomiarami wykonanymi przez profesjonalne urządzenie przeznaczone do tego celu. Różnica wynosiła zaledwie 3 uderzenie na minutę.

Dużym wyzwaniem jest wykonywanie pomiarów u poruszającego się człowieka lub w zmieniającym się oświetleniu. Eksperymenty udowodniły, że niewielkie ruchy nie przeszkadzają w pomiarach. Ponadto okazało się, że możliwe jest jednoczesne rozpoznawanie i wykonywanie pomiarów dla trzech osób stojących przed kamerą.

Wykorzystanie fotografii do tego typu pomiarów nie jest nowym pomysłem, jednak Poh zrobił to w wyjątkowo sprytny sposób. Fokko Wieringa, który już w 2005 roku opublikował artykuł na temat wykrywania pulsu za pomocą fotografii stwierdził, że bardzo ekscytujący w nowej metodzie jest fakt, że można skupić się na konkretnym miejscu twarzy i śledzić je (uzyskując w ten sposób tolerancję na ruchy wykonywane przez człowieka) oraz sprytna metoda przetwarzania danych. Uzyskana dzięki niej jakość sygnału pozwala na używanie taniej prostej kamery, nawet do badania umiarkowanie poruszających się osób. Możliwość jednoczesnego badania kilku osób również jest czymś nowym. W bardzo oryginalny sposób połączono tutaj kilka nowych rzeczy.

Poh pracuje też nad rozszerzeniem swojej technologii o możliwość zdalnego mierzenia saturacji.

 

http://www.youtube.com/watch?v=LyWnvAWEbWE

Share this post


Link to post
Share on other sites

Nie widzę tego, puls to jeszcze ale ciśnienie jak?

Jeśli delikwent wejdzie do domu dopiero a na dworze -20 albo +30 to co wtedy? Jeśli delikwent dopiero co z pod prysznica wyjdzie czy z wanny to co z kolorem skóry. Jeśli się delikwent uchla w trupa to co? (pomijając trywialną konsekwencje w postaci zajęcia pozycji horyzontalnej na podłożu) Jednak wynik może nieco odbiegać od stanu faktycznego. Spożycie niewielkich ilości alkoholu dość skutecznie uniemożliwia autoryzacje przez systemy biometryczne identyfikujące po siatkówce.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By Mariusz Błoński
      Ktoś zna rozwiązanie tej iluzji?
       

    • By KopalniaWiedzy.pl
      Picie 3 razy dziennie kubka czarnej herbaty może znacząco obniżyć ciśnienie krwi. I to zarówno skurczowe, jak i rozkurczowe (Archives of Internal Medicine).
      W eksperymencie wzięło udział 95 Australijczyków w wieku od 35 do 75 lat. Pili oni 3 kubki czarnej herbaty albo napoju o tym samym smaku i podobnej zawartości kofeiny (placebo). Różnica polegała na tym, że alkaloidu nie pozyskano z herbaty.
      Po upływie 6 miesięcy naukowcy z Uniwersytetu Zachodniej Australii zauważyli, że w porównaniu z placebo, u osób pijących czarną herbatę 24-godzinne ciśnienie skurczowe i rozkurczowe były niższe o 2-3 mm słupa rtęci.
      Prof. Jonathan Hodgson podkreśla, że w przyszłości trzeba będzie jeszcze sprawdzić, w jaki sposób czarna herbata obniża ciśnienie. Wspomina jednak, że wcześniejsze badania wykazały, że zawarte w niej flawonoidy wzmacniają naczynia krwionośne.
    • By KopalniaWiedzy.pl
      Płomykówki zwyczajne (Tyto alba) polują niemal bezszelestnie. Udaje im się to, bo lecą bardzo wolno, przez co ograniczają liczbę machnięć skrzydłami. Wolny lot to zasługa specjalnej budowy i kształtu skrzydeł.
      Dr Thomas Bachmann z Uniwersytetu Technicznego w Darmstadt zbadał upierzenie tych sów oraz wykonał obrazowanie 3D ich kośćca. Wyniki swoich badań przedstawił na dorocznej konferencji Stowarzyszenia Biologii Integracyjnej i Porównawczej w Charleston.
      Płomykówki polują przeważnie w ciemności, dlatego polegają na informacjach akustycznych. Muszą latać cicho, by słyszeć przemieszczające się nornice i nie zaalarmować ofiary, że znajdują się gdzieś w pobliżu.
      Jedną z najważniejszych cech skrzydeł T. alba jest duża krzywizna. Zapewnia ona lepszą nośność. Przepływ powietrza nad górną powierzchnią skrzydła ulega przyspieszeniu, przez co spada ciśnienie. Skrzydło jest zasysane w górę, w kierunku niższego ciśnienia.
      Za sprawą delikatnej powierzchni zredukowaniu ulega hałas związany z tarciem pióra o pióro. Poza tym całe ciało sowy jest pokryte grubą warstwą piór. Płomykówka ma ich o wiele więcej niż ptak podobnej wielkości. Gęsto rozmieszczone pióra działają jak panele akustyczne, które pochłaniają wszystkie niechciane dźwięki.
    • By KopalniaWiedzy.pl
      W odpowiednich warunkach woda może stać się metalem, a następnie izolatorem, stwierdzili uczeni z Cornell University. W PNAS ukazał się artykuł, w którym Neil Ashcroft, Roald Hoffmann i Andreas Hermann opisują wyniki swoich teoretycznych obliczeń.
      Wynika z nich, że przy ciśnieniu rzędu 1-5 terapaskali woda tworzy stabilne struktury. Mimo, że ciśnienie takie jest dziesiątki milionów razy większe od ciśnienia ziemskiego, istnienie wody w takim stanie nie jest wykluczone. Wręcz przeciwnie, może ona powszechnie występować nawet w naszym Układzie Słonecznym. Tak olbrzymie ciśnienie może panować wewnątrz Urana.
      Z wyliczeń uczonych wynika, że powyżej 1 terapaskala poszczególne molekuły wody przestają istnieć, a H2O zostaje ściśnięta tworząc siatkę połączeń tlenu i wodoru, która przyjmuje najróżniejsze kształty. Już wcześniej obliczano, że przy ciśnieniu 1,55 TPa woda staje się metalem i ma najbardziej stabilną strukturę. Naukowcy z Cornell poszli dalej i udało im się wyliczyć, że najbardziej stabilna jest woda przy ciśnieniu wyższym od 4,8 TPa. Wówczas jednak traci ona właściwości metalu i staje się izolatorem.
      Jak zauważa profesor Ashcroft, najbardziej niezwykłym wnioskiem wypływającym z obliczeń jest odkrycie, że olbrzymie ciśnienie powoduje, iż woda przestaje być ciałem stałym i w pewnym momencie zamienia się w kwantową ciecz. Trudno jest to sobie wyobrazić - topienie lodu pod wpływem podwyższonego ciśnienia - stwierdził naukowiec.
    • By KopalniaWiedzy.pl
      Naukowcy ze szwedzkiego Chalmers University of Technology stworzyli światło z... próżni. W ten sposób udowolnili prawdziwość teoretycznych założeń, które zaistniały w nauce przed 40 laty.
      Utworzone przez uczonych fotony pojawiały się i znikały w próżni. Odkrycie opiera się na jednym z najbardziej niezwykłych założeń fizyki kwantowej, które mówi, że próżnia nie oznacza braku cząsteczek. W rzeczywistości jest ona pełna pojawiających się i znikających cząsteczek. Jako, że cząsteczki te są niezwykle ulotne, są uważane za cząsteczki wirtualne.
      Christopher Wilson i jego zespół zmusili fotony, by przestały być wirtualne i stały się realne.
      W 1970 roku pojawiła się teoria, że wirtualne fotony z próżni staną się fotonami realnymi, jeśli odbiją się od lustra, które porusza się niemal z prędkością światła.
      Jako, że nie jest możliwe spowodowanie, by lustro poruszało się tak szybko, zastosowaliśmy inny sposób na osiągnięcie tego samego efektu - mówi profesor Per Delsing. Zamiast zmieniać fizyczną odległość od lustra, zmieniliśmy elektryczną odległość od obwodu elektrycznego, który działa jak lustro dla mikrofal.
      Takie „lustro" składa się z niezwykle czułego nadprzewodzącego urządzenia do interferencji kwantowej (SQUID). Naukowcy miliardy razy w ciągu sekundy zmieniali kierunek pola magnetycznego, dzięki czemu „lustro" wibrowało z prędkością 1/4 prędkości światła.
      W wyniku tego z próżni pojawiały się pary fotonów, mogliśmy je mierzyć jako promieniowanie mikrofalowe. Właściwości tego promieniowania były dokładnie takie, jakie przewiduje teoria kwantowa dla par fotonów pojawiających się w ten sposób - mówi Per Delsing.
      Naukowcy wyjaśniają, że „lustro" przekazuje część swojej energii kinetycznej wirtualnym fotonom, dzięki czemu stają się one fotonami realnymi. Jako, że masa spoczynkowa fotonu wynosi 0, nie wymagają one zbyt dużej energii by przejść ze stanu wirtualnego do realnego. Teoretycznie z próżni można też uzyskać inne cząsteczki, jak protony czy neutrony, jednak wymaga to znacznie więcej energii niż w przypadku fotonów.
×
×
  • Create New...