Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Komputery kwantowe - przyszłość informatyki, która brzmi bardziej niesamowicie, niż technologie z filmów science-fiction. Na drodze do ich realizacji zrobiono kolejny krok - użyto lasera do schłodzenia cząsteczek.

Kwantowe komputery mają działać szybciej dzięki wykorzystaniu kwantowych bitów informacji, czyli kubitów. W tej roli uczeni obsadzali w swoich eksperymentach albo atomy, albo „sztuczne atomy". Czym jest sztuczny atom? To grupa wielu atomów, zachowująca się na poziomie kwantowym jak pojedynczy atom. I jedno, i drugie rozwiązanie ma wady: splątane atomy nie komunikują się ze sobą wystarczająco silnie na potrzeby obliczeń, sztuczne atomy spisują się tu doskonale, ale z powodu swojej masy sprawiają inny problem: zbyt łatwo poddają się zakłóceniom ze świata zewnętrznego. Czy nie da się znaleźć innego rozwiązania? Narzuca się wykorzystanie cząsteczek chemicznych, ale z różnych powodów również się to dotąd nie sprawdzało.

Jeden z tych problemów właśnie rozwiązali naukowcy z Yale University: David DeMille, Edward Shuman i John Barry. Jeśli chcemy stworzyć kwantowy komputer, potrzebujemy możliwości manipulowania jego kubitami, a to jest trudne ponieważ każda manipulacja zakłóca ich stan kwantowy. Ponadto cząsteczki bez przerwy poruszają się, wibrują i obracają. Jak wiadomo, ruch cząsteczek to inaczej temperatura, jeśli chcemy cząsteczkę uciszyć, musimy obniżyć jej temperaturę blisko zera absolutnego, czyli -273,15 °C.

Jak można schłodzić pojedynczą cząsteczkę? Udało się to zrobić z wykorzystaniem lasera. Wielu może zdziwić, w jaki sposób laser, kojarzony raczej z wysoką temperaturą można wykorzystać do chłodzenia? Promień lasera to najprościej mówiąc: strumień fotonów, które trafiając w cząsteczkę, poruszają nią. Jeśli cząsteczkę umieścimy pomiędzy dwoma przeciwległymi promieniami, to ograniczymy jej ruchy i przytrzymamy. A mniej ruchu to niższa temperatura. Chłodzenie laserem wykorzystywano już do pojedynczych atomów, ale nie stosowano wcześniej tej metody do cząsteczek, ponieważ mają one nieregularne kształty i zachowują się nieprzewidywalnie. Dlatego osiągnięcie zespołu DeMille'a jest takim sukcesem. Schłodzili oni niemal do zera absolutnego cząsteczkę monofluorku strontu, ale zamierzają ją rozwinąć i zastosować również do cząsteczek innych związków.

To rewolucja - mówią autorzy. Technika znajdzie zastosowanie nie tylko przy konstruowaniu kwantowych komputerów, ale również do wielu innych eksperymentów. Jednym z nich jest uzyskanie efektu tunelowania kwantowego, ale przyda się również do precyzyjnych pomiarów struktury molekuł, czy wynajdywania nowych, nieznanych dotąd cząsteczek.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

jest jeszcze taka cecha jak czytanie ze zrozumieniem

ja tez w pierwszej chwili myslalem ze to stary-nius

ale kluczem jest tu

"Chłodzenie laserem wykorzystywano już do pojedynczych atomów, ale nie stosowano wcześniej tej metody do cząsteczek"

 

zatem pogratulowac veyronowi umiejetnosci czytania ze zrozumieniem :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ewentualnie zarzucania lektury po pierwszym akapicie z mniemaniem, że wie się wszystko, na czym iwle osób się nacina. :)

A ja celowo nie streszczam clue na początku. :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Hmm, trafiłem na ten artykuł, jak rozumiem popularno-naukowy, a nie fantastyczno-naukowy i niestety jak często miewam ostatnio po przeczytaniu z artykułami tego typu dotyczącymi fizyki kwantowej, poczułem niesmak. Jak domniemam autor postu nie jest ekspertem w dziedzinie, więc to nie jego wina, ale zachwyt nieproporcjonalny do faktycznego stanu rzeczy (choć oczywiście David DeMille jest wybitnym naukowce i miłym człowiekiem), ze sformułowaniami na poziomie podstawówki, razi w oczy. Zakładam jednak, że może inaczej się nie da, bo albo artykuł się nie sprzeda, albo żaden laik nie dotrwa do drugiego akapitu...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Umożliwia uzyskanie obrazu powierzchni ze zdolnością rozdzielcz/color] dzięki wykorzystaniu sił oddziaływań międzyatomowych, na zasadzie przemiatania ostrza nad lub pod powierzchnią próbki. 

 

http://pl.wikipedia.org/wiki/Mikroskop_si%C5%82_atomowych

 

... o obserwacji pojedynczych atomów (co jest nierealne) bo nie ma czym tego zrobić (atomy to nie kulki z łozyska które wystarczy oświetlić i oglądać pod mikroskopem).

Oczywiście po zaniku pola magnetycznego generowanego przez poruszający się jon mozna wnosić ze się zatrzymał.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie.
      Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa.
      Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym.
      Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
      Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
      Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
      Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
      Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
      Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
      Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
      Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
      Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
      Więcej o unimonie można przeczytać na łamach Nature Communications.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą zrewolucjonizować wiele dziedzin nauki oraz przemysłu, przez co wpłyną na nasze życie. Rodzi się jednak pytanie, jak duże muszą być, by rzeczywiście dokonać zapowiadanego przełomu. Innymi słowy, na ilu kubitach muszą operować, by ich moc obliczeniowa miała znaczący wpływ na rozwój nauki i technologii.
      Na pytanie to postanowili odpowiedzieć naukowcy z Wielkiej Brytanii i Holandii. Przyjrzeli się dwóm różnym typom problemów, jakie będą mogły rozwiązywać komputery kwantowe: złamaniu zabezpieczeń Bitcoina oraz symulowanie pracy kofaktora FeMo (FeMoco), który jest ważnym elementem białka wchodzącego w skład nitrogenazy, enzymu odpowiedzialnego za asymilację azotu.
      Z AVS Quantum Science dowiadujemy się, że naukowcy stworzyli specjalne narzędzie, za pomocą którego mogli określić wielkość komputera kwantowego oraz ilość czasu potrzebnego mu do rozwiązania tego typu problemów. Obecnie większość prac związanych z komputerami kwantowymi skupia się na konkretnych platformach sprzętowych czy podzespołach nadprzewodzących. Różne platformy sprzętowe znacząco się od siebie różnią chociażby pod względem takich kluczowych elementów, jak tempo pracy czy kontrola jakości kubitów, wyjaśnia Mark Webber z University of Sussex.
      Pobieranie azotu z powietrza i wytwarzanie amoniaku na potrzeby produkcji nawozów sztucznych to proces wymagający dużych ilości energii. Jego udoskonalenie wpłynęłoby zarówno na zwiększenie produkcji żywności, jak i zmniejszenie zużycia energii, co miałoby pozytywny wpływ na klimat. Jednak symulowanie odpowiednich molekuł, których opracowanie pozwoliłoby udoskonalić ten proces jest obecnie poza możliwościami najpotężniejszych superkomputerów.
      Większość komputerów kwantowych jest ograniczone faktem, że wykorzystywane w nich kubity mogą wchodzić w bezpośrednie interakcje tylko z kubitami sąsiadującymi. W innych architekturach, gdzie np. są wykorzystywane jony uwięzione w pułapkach, kubity nie znajdują się na z góry ustalonych pozycjach, mogą się przemieszczać i jeden kubit może bezpośrednio oddziaływać na wiele innych. Badaliśmy, jak najlepiej wykorzystać możliwość oddziaływania na odległe kubity po to, by móc rozwiązać problem obliczeniowy w krótszym czasie, wykorzystując przy tym mniej kubitów, wyjaśnia Webber.
      Obecnie największe komputery kwantowe korzystają z 50–100 kubitów, mówi Webber. Naukowcy oszacowali, że do złamania zabezpieczeń sieci Bitcoin w ciągu godziny potrzeba – w zależności od sprawności mechanizmu korekty błędów – od 30 do ponad 300 milionów kubitów. Mniej więcej godzina upływa pomiędzy rozgłoszeniem a integracją blockchaina. To czas, w którym jest on najbardziej podatny na ataki.
      To wskazuje, że Bitcoin jest obecnie odporna na ataki z wykorzystaniem komputerów kwantowych. Jednak uznaje się, że możliwe jest zbudowanie komputerów kwantowych takiej wielkości. Ponadto ich udoskonalenie może spowodować, że zmniejszą się wymagania, co do liczby kubitów potrzebnych do złamania zabezpieczeń Bitcoin.
      Webber zauważa, że postęp na polu komputerów kwantowych jest szybki. Przed czterema laty szacowaliśmy, że do złamania algorytmu RSA komputer kwantowy korzystający z jonów uwięzionych w w pułapce potrzebowałby miliarda fizycznych kubitów, a to oznaczało, że maszyna taka musiałaby zajmować powierzchnię 100 x 100 metrów. Obecnie, dzięki udoskonaleniu różnych aspektów tego typu komputerów, do złamania RSA wystarczyłaby maszyna o rozmiarach 2,5 x 2,5 metra.
      Z kolei do przeprowadzenia symulacji pracy FeMoco komputery kwantowe, w zależności od wykorzystanej architektury i metod korekcji błędów, potrzebowałyby od 7,5 do 600 milionów kubitów, by przeprowadzić taką symulację w ciągu około 10 dni.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy denerwujemy się, że nasz domowy pecet uruchamia się za długo, pewnym pocieszeniem może być informacja, iż w porównaniu z eksperymentalnymi komputerami kwantowymi jest on demonem prędkości. Uczeni pracujący nad tego typu maszynami spędzają każdego dnia wiele godzin na ich odpowiedniej kalibracji.
      Komputery kwantowe, a raczej maszyny, które w przyszłości mają się nimi stać, są niezwykle czułe na wszelkie zewnętrzne zmiany. Wystarczy, że temperatura otoczenia nieco spadnie lub wzrośnie, że minimalnie zmieni się ciśnienie, a maszyna taka nie będzie prawidłowo pracowała. Obecnie fizycy kwantowi muszą każdego dnia sprawdzać, jak w porównaniu z dniem poprzednim zmieniły się warunki. Później dokonują pomiarów i ostrożnie kalibrują układ kwantowy - mówi profesor Frank Wilhelm-Mauch z Uniwersytetu Kraju Saary. Dopuszczalny margines błędu wynosi 0,1%, a do ustawienia jest około 50 różnych parametrów. Kalibracja takiej maszyny jest zatem niezwykle pracochłonnym przedsięwzięciem.
      Wilhelm-Mauch i jeden z jego doktorantów zaczęli zastanawiać się na uproszczeniem tego procesu. Stwierdzili, że niepotrzebnie skupiają się na badaniu zmian w środowisku. Istotny jest jedynie fakt, że proces kalibracji prowadzi do pożądanych wyników. Nie jest ważne, dlaczego tak się dzieje. Uczeni wykorzystali algorytm używany przez inżynierów zajmujących się mechaniką konstrukcji. Dzięki niemu możliwe było zmniejszenie odsetka błędów poniżej dopuszczalnego limitu 0,1% przy jednoczesnym skróceniu czasu kalibracji z 6 godzin do 5 minut. Niemieccy naukowcy nazwali swoją metodologię Ad-HOC (Adaptive Hybrid Optimal Control) i poprosili kolegów z Uniwersytetu Kalifornijskiego w Santa Barbara o jej sprawdzenie. Testy wypadły pomyślnie.
      W przeciwieństwie do metod ręcznej kalibracji nasza metoda jest całkowicie zautomatyzowana. Naukowiec musi tylko wcisnąć przycisk jak w zwykłym komputerze. Później może pójść zrobić sobie kawę, a maszyna kwantowa sama się wystartuje - mówi Wilhelm-Mauch.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...