Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy chcą wykonać głęboki na niemal 4 km odwiert w czynnym wulkanie, by mieć na bieżąco wgląd w jego aktywność. Campi Flegrei ma średnicę 13 km, znajduje się głównie pod wodą i jest de facto złożoną z 24 kraterów i stożków wulkanicznych kalderą. Włosi się nią interesują, bo zagraża Neapolowi. Niektórzy eksperci odżegnują się od pomysłu wiercenia, ponieważ uważają, że procedura może doprowadzić do erupcji lub trzęsienia ziemi.

Choć do ostatniej erupcji doszło w 1583 r., ostatnio w okolicy wzrosła aktywność sejsmiczna, co zrodziło obawy, że wulkan niedługo się obudzi. Projekt wdrożenia monitoringu rozpocznie się na początku października od wydrążenia w Bagnoli 0,5-km otworu. Druga faza przedsięwzięcia – pogłębienie odwiertu - wystartuje wiosną przyszłego roku. Naukowcy chcą się posłużyć czujnikami, by mierzyć aktywność sejsmiczną i temperaturę skał na różnych głębokościach. Kaldery są jedynymi, w dodatku nadal słabo poznanymi, wulkanami, które mogą spowodować naprawdę katastrofalne erupcje z globalnymi konsekwencjami – twierdzi Giuseppe De Natale, koordynator projektu z Narodowego Instytutu Geofizyki i Wulkanologii.

Przeciwnicy rozwiązania, np. prof. Benedetto de Vivo z Uniwersytetu w Neapolu, podkreślają, że w Islandii tego typu wiercenia trzeba było w zeszłym roku odwołać, bo okazało się, że magma znajduje się na mniejszych głębokościach niż sądzono.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Grupa naukowców i inżynierów wykonały pierwszy w Zachodniej Antarktyce odwiert o głębokości przekraczającej 2000 metrów. To część badań mających na celu stwierdzenie, jak ten region będzie reagował na zmiany klimatu.
      Jedenastoosobowy zespół z British Antarctic Survey przez ostatnich 12 tygodni pracował na Strumieniu Lodowym Rutforda. We wtorek, 8 stycznia, po 63 godzinach nieprzerwanej pracy, naukowcy dostali się do osadów położonych 2152 metry pod powierzchnią lodu. Następnie w odwiert wpuszczono instrumenty, które będą rejestrowały ciśnienie wody oraz temperaturę i deformacje lodu. Prace odbywały się w ramach projektu BEAMISH, którego przeprowadzenie planowano od 20 lat. W 2004 roku doszło do nieudanej próby wykonania odwiertu.
      Od dawna czekałem na ten moment i jestem zadowolony, że w końcu osiągnęliśmy cel. Nasza wiedza na temat tego, co dzieje się w Zachodniej Antarktyce ma luki. Dzięki badaniom obszaru, w którym lód styka się z miękkimi osadami, będziemy lepiej rozumieć, jak region ten może zmienić się w przyszłości i jak przyczyni się do zmiany poziomu oceanów, mówi główny autor badań, doktor Andy Smith.
      Dotychczas uczeni z BAS wywiercili dwa otwory (drugi ukończono 22 stycznia). Przy pierwszym z nich będą pracowali do połowy lutego, a następnie przeniosą się do drugiego, znajdujące się kilka kilometrów dalej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed 300 milionami lat na terenie dzisiejszych północnych Chin wybuchł wulkan, którego popioły pogrzebały i przechowały do naszych czasów cały las. Paleobotanik profesor Hermann Pfefferkorn z University of Pennsylvannia wraz z kolegami z Chińskiej Akademii Nauk oraz uniwersytetów Shenyang i Yunnan opublikowali właśnie wyniki badań lasu.
      Skamieniałości znajdujące się w pobliżu miejscowości Wuda są niezwykłym świadectwem historii. Popioły wulkaniczne pokryły las w ciągu zaledwie kilku dni, zachowały go zatem w takim stanie, w jakim znajdował się w konkretnym momencie.
      Las jest wspaniale zachowany. Możemy znaleźć tam gałęzie z wciąż przyczepionymi liśćmi. Obok są kolejne gałęzie, a w pobliżu pień drzewa, z którego pochodzą - mówi Pfefferkorn. Niektóre z mniejszych drzew zachowały się w całości.
      Uczeni zbadali dotychczas trzy miejsca różne miejsca o łącznej powierzchni 1000 metrów kwadratowych. To wystarczająco dużo, by dość dokładnie określić ekologię lasu.
      Wiek popiołu oszacowano na 298 milionów lat, zatem pochodzi on z początku permu. W tym czasie płyty kontynentalne powoli formowały Pangeę. Ameryka Północna i Europa były jednym kontynentem, a dzisiejsze Chiny znajdowały się na dwóch mniejszych kontynentach. Wszystkie znajdowały się w okolicach równika, panował na nich zatem klimat tropikalny. Klimat całego globu był podobny do współczesnego, co jest szczególnie interesujące, gdyż jego badanie może zrozumieć zachodzące obecnie zmiany.
      Naukowcy zidentyfikowali sześć grup drzew. Większość stanowiły niskie rośliny, jednak były wśród nich również wymarłe już Sigilaria i Cordaites, dorastające do ponad 30 metrów. Znaleziono też zachowane niemal w całości rośliny z rzędu Noeggerathiales.
      Badania zespołu Pfefferkorna są pod kilkoma względami pionierskie. To pierwsza tego typu rekonstrukcja lasu w Azji, pierwszy znany las z tego okresu, który utworzył torfowisko oraz pierwszy las, w którego niektórych obszarach dominowały Noeggerathiales - mówi uczony.
    • przez KopalniaWiedzy.pl
      Naukowcy z University of Colorado Boulder wiedzą, jak rozpoczęła się i dlaczego trwała Mała Epoka Lodowcowa. Pod nazwą tą kryje się okres gwałtownego ochłodzenia klimatu Europy. W latach 1275-1300 średnie temperatury nagle się obniżyły i aż do XIX wieku, szczególnie w północnej Europie, panowały wyjątkowo srogie zimy. Jednym z symboli Małej Epoki Lodowcowej jest obraz przedstawiający mieszkańców Londynu jeżdżących na łyżwach po Tamizie. Zamarzły też kanały Holandii.
      Istnieją dowody, że okres ten charakteryzował się też spadkami temperatur w Chinach i Ameryce południowej, jednak najbardziej doświadczył go Stary Kontynent. W górskich dolinach szybko rozszerzające się lodowce niszczyły całe wsie i miasteczka.
      Dotychczas uważano, że Małą Epokę Lodowcową zapoczątkował wulkanizm, zmiany w aktywności słonecznej lub jedno i drugie. Naukowcy z Boulder nie tylko znaleźli przyczynę gwałtownego spadku temperatur w ciągu zaledwie 25 lat, ale wskazali również, dlaczego niższe temperatury utrzymały się przez kilkaset lat.
      Badania węglem radioaktywnym zamarzniętych roślin z Ziemi Baffina, rdzeni lodowych oraz osadów z biegunów i Islandii oraz symulacje zjawisk klimatycznych pozwoliły stwierdzić, że Mała Epoka Lodowcowa rozpoczęła się od czterech wielkich erupcji wulkanicznych, które wystąpiły w tropikach w ciągu 50 lat. Rośliny, które nagle zamarzły, a ich korzenie zostały nienaruszone wskazują, że doszło do gwałtowanego ochłodzenia w latach 1275-1300. Drugi okres nagłego spadku temperatury, wskazujący na nagłe zmiany, miał miejsce około roku 1450. Badania roślin zostały potwierdzone obserwacjami osadów z islandzkiego jeziora Langjokull. Pokazują one, że pod koniec XIII wieku warstwy wskazujące na erupcje wulkaniczne nagle stały się znacznie grubsze. Ponowne zwiększenie grubości zauważono w warstwach z XV wieku. W tych samych okresach można obserwować zwiększoną erozję powodowaną przez lodowce. To pozwoliło połączyć dane i stwierdzić, że wybuchy wulkanów ochłodziły klimat. Pozostawało jednak pytanie, dlaczego ochłodzenie trwało tak długo. Ochładzające Ziemię pyły z erupcji nie mogły przecież utrzymywać się w atmosferze przez setki lat.
      Naukowcy wykorzystali Community Climate System Model, do sprawdzenia wpływu nagłego ochłodzenia wywołanego wielkimi erupcjami, na klimat. Symulacje wykazały, że gwałtowne ochłodzenie północnych części Europy oraz Grenlandii mogło spowodować szybki rozrost grenlandzkich lodowców. W końcu te, znajdujące się na wschodnim wybrzeżu, dotarły do Północnego Atlantyku, gdzie zaczęły się topić. Woda z lodowców niemal nie zawiera soli, jest mniej gęsta od wody słonej. Z tego też powodu lodowce topiąc się w zetknięciu z cieplejszymi od nich wodami Atlantyku, uwalniały olbrzymie ilości zimnej słodkiej wody, która nie mieszała się z wodą oceanu. Tworzyła na jego powierzchni rodzaj zimnej kołdry. To spowodowało z kolei, że wody Atlantyku nie uwalniały ciepła w okolicach arktycznych, zatem nie ogrzewały Grenlandii. Tak powstał samopodtrzymujący się system chłodzący, dzięki któremu epoka lodowcowa trwała na długo po wygaśnięciu aktywności wulkanicznej.
      Nasze symulacje pokazały, że erupcje wulkaniczne mogą mieć głęboki wpływ chłodzący. Mogą rozpocząć reakcję łańcuchową tak zmieniając prądy oceaniczne i pokrywę lodową, że niższe temperatury utrzymują się przez wieki - mówi współautorka badań, Bette Otto-Bliesner.
      Profesor Gifford Miller, który kierował zespołem badawczym, powiedział, że na potrzeby symulacji komputerowych ustawiono stały poziom aktywności słonecznej. To pozwoliło stwierdzić, że do wywołania ochłodzenia wystarczyła sama aktywność wulkanów, ilość ciepła docierającego ze Słońca wcale nie musiała być mniejsza niż zwykle. Zdecydowano się nie uwzględniać wpływu naszej gwiazdy, gdyż, jak przypomina Miller szacunki dotyczące zmian aktywności pokazują, że jest ona niewielka. Obecnie uważa się, że w ciągu kilku ostatnich tysiącleci aktywność Słońca zmieniła się w mniejszym stopniu, niż zmienia się podczas jego 11-letniego cyklu.
    • przez KopalniaWiedzy.pl
      Często słyszy się, że telewizja to złodziej czasu, który można by przeznaczyć na ćwiczenia czy kontakty z innymi ludźmi. Okazuje się, że w kwestii poprawy formy da się coś zrobić, wystarczy maszerować w miejscu po rozpoczęciu przerwy reklamowej (Medicine & Science in Sports & Exercise).
      Naukowcy z University of Tennessee badali grupę 23 kobiet i mężczyzn w wieku 18-65 lat. W studium uwzględniono osoby reprezentujące różne kategorie wskaźnika masy ciała (BMI). Sprawdzano, ile kalorii ulega spaleniu podczas leżenia, siedzenia, stania, chodzenia w miejscu i marszu na bieżni z prędkością ok. 5 km/h. W drugiej części eksperymentu ci sami badani na siedząco oglądali przez godzinę telewizję albo spędzali przed nim tyle samo czasu, wykorzystując przerwy reklamowe na marsz w miejscu. Dzięki krokomierzom można było zliczać kroki.
      Chodząc w miejscu w czasie reklam, ochotnicy spalali średnio 148 kilokalorii. Ustalono, że w ciągu mniej więcej 25 minut przeciętnie wykonywali 2111 kroków. Godzinne ćwiczenia na bieżni pozwalały zużyć średnio 304 kilokalorie. Niestety, więźniowie kanap i foteli nie wypadali najlepiej. Po 60 min oglądania stamtąd telewizji spalali zaledwie 81 kcal. Co więcej, nie odnotowano istotnych statystycznie różnic w liczbie spalonych kalorii między odpoczynkiem a oglądaniem TV na siedząco (79 vs. 81 kcal).
      Zespół z Knoxville uważa, że sygnał rozpoczęcia bloku reklamowego może być dobrą wskazówką, że trzeba wstać i trochę się poruszać. Znany dżingiel warto potraktować jako element środowiska, który pomaga w wykształceniu korzystnych dla zdrowia nawyków.
    • przez KopalniaWiedzy.pl
      Komórki gleju pełnią wiele różnych funkcji, m.in. stanowią zrąb dla neuronów mózgu, chronią je, odżywiają czy współtworzą barierę krew-mózg. Teraz okazało się, że nie są zwykłym klejem (ich nazwa pochodzi od gr. glia - klej), ale w znacznym stopniu odpowiadają za plastyczność mózgu. Wpływają na działanie synaps i w ten sposób pomagają segregować informacje potrzebne do uczenia.
      Komórki gleju są jak nadzorcy. Regulując synapsy, kontrolują przepływ danych między neuronami i oddziałują na przetwarzanie informacji oraz proces uczenia - tłumaczy Maurizio De Pittà, doktorant z Uniwersytetu w Tel Awiwie. Opiekunem naukowym De Pitty był prof. Eshel Ben-Jacob. Współpracując z kolegami z USA i Francji, student stworzył pierwszy na świecie model komputerowy, uwzględniający wpływ gleju na synaptyczny transfer danych.
      De Pittà i inni domyślali się, że glej może odgrywać ważną rolę w pamięci i uczeniu, ponieważ tworzące go komórki występują licznie zarówno w hipokampie, jak i korze mózgowej. Na każdy neuron przypada tam od 2 do 5 komórek gleju. Aby potwierdzić swoje przypuszczenia, naukowcy zbudowali model, który uwzględniał wyniki wcześniejszych badań eksperymentalnych.
      Wiadomości przesyłane w sieciach mózgu powstają w neuronach, ale glej działa jak moderator decydujący, które informacje zostaną przesłane i kiedy. Może albo wywołać przepływ informacji, albo zwolnić aktywność synaps, gdy staną się nadmiernie pobudzone. Jak nadmienia prof. Ben-Jacob, wygląda na to, że glej jest dyrygentem, który dąży do optymalnego działania mózgu.
      Wbrew pozorom, przydatność modelu De Pitty nie ogranicza się wyłącznie do lepszego zdefiniowania funkcji gleju, ponieważ może zostać wykorzystany np. w mikrochipach, które naśladują sieci występujące w mózgu czy podczas badań nad padaczką i chorobą Alzheimera. W przypadku epilepsji glej wydaje się nie spełniać funkcji modulujących, a w przebiegu demencji nie pobudza przekazywania danych.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...