Przełomowe kwantowe "trojaczki"
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z University of Birmingham opublikowali na łamach Physical Review Letters artykuł, w którym niezwykle szczegółowo opisali naturę fotonów, ich interakcję z materią oraz sposób, w jaki są emitowane przez atomy i molekuły oraz kształtowane przez środowisko. W ten sposób mogli precyzyjnie opisać kształt pojedynczego fotonu. Zadanie to przekraczało dotychczas możliwości nauki, gdyż foton może propagować się w środowisku na niezliczoną liczbę sposobów, przez co trudno jest modelować interakcje, w jakie wchodzi.
Nasze obliczenia pozwoliły nam na przełożenie pozornie nierozwiązywalnego problemu w coś, co można obliczyć. A produktem ubocznym naszego modelu jest możliwość stworzenia obrazu pojedynczego fotonu, czego dotychczas nikt nie dokonał, mówi doktor Benjamin Yuen z Wydziału Fizyki i Astronomii University of Birmingham.
Współautorka badań, profesor Angela Demetriadou stwierdziła: geometria i właściwości optyczne środowiska mają olbrzymi wpływ na sposób emitowania fotonów, definiują ich kształt, barwę, a nawet to, z jakim prawdopodobieństwem istnieją.
Praca brytyjskich uczonych pogłębia naszą wiedzę na temat wymiany energii pomiędzy światłem a materią, pozwala lepiej zrozumieć, w jaki sposób światło wpływa na bliższe i dalsze otoczenie. Pozwolą lepiej manipulować interakcjami światła z materią, a więc przyczynią się do udoskonalenia czujników, ogniw fotowoltaicznych czy komputerów kwantowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z University of Washington zauważyli, że są w stanie wykryć „atomowy oddech” czyli wibracje mechaniczne pomiędzy dwiema warstwami atomów. Dokonali tego obserwując światło emitowane przez atomy wzbudzone laserem. Odkryte zjawisko można wykorzystać do zakodowania i przesłania informacji kwantowej. Uczeni zbudowali urządzenie, które może stać się elementem składowym przyszłych technologii kwantowych.
To nowa platforma w skali atomowej, która wykorzystuje optomechanikę, szereg zjawisk w których ruch światła i ruch mechaniczny są ze sobą nierozerwalnie powiązane. Mamy tutaj efekty kwantowe, które możemy wykorzystać do kontrolowania pojedynczego fotonu przemieszczającego się przez zintegrowane obwody optyczne, mówi profesor Mo Li, który stał na czele grupy badawczej.
Ostatnie badania bazowały na wcześniejszych pracach związanych z ekscytonami. To kwazicząstki w których można zakodować informację kwantową, a następnie przesłać ją w postaci fotonu, którego właściwości kwantowe (jak polaryzacja czy długość fali) pełnią rolę kubitu. A jako że kubit ten jest niesiony przez foton, informacja przemieszcza się z prędkością światła. Fotony są naturalnym wyborem jako nośnik informacji kwantowej, gdyż potrafimy przesyłać je za pomocą światłowodów szybko na duże odległości, nie tracą przy tym zbyt wielu informacji, dodaje doktorantka Adina Ripin.
Naukowcy pracowali w ekscytonami chcąc stworzyć urządzenie emitujące pojedyncze fotony. Obecnie w tym celu używa się atomowych macierzy, takich jak np. znajdujące się w diamentach. Jednak w macierzach takich występują naturalne defekty, które zaburzają pracę tego typu urządzeń. Naukowcy z Uniwersity of Washington chcieli precyzyjnie kontrolować miejsce, z którego będzie dochodziło do emisji fotonu.
Wykorzystali w tym celu nałożone na jednoatomowe warstwy diselenku wolframu. Dwie takie warstwy nałożyli na podłoże, na którym znajdowały się setki kolumienek o szerokości 200 nanometrów każda. Diselenek wolframu przykrył te kolumienki, a ich obecność pod spodem doprowadziła do pojawienia się niewielkich naprężeń w materiale. W wyniku naprężeń znajdujących się w miejscu każdej z kolumienek powstała kropka kwantowa. I to właśnie te kropki są miejscem, w którym dochodzi do emisji. Dzięki precyzyjnemu impulsowi laserowemu naukowcy byli w stanie wybić elektron, tworząc w ten sposób ekscytony. Każdy z ekscytonów składał się z ujemnie naładowanego elektronu z jednej warstwy diselenku wolframu i dodatnio naładowanej dziury z drugiej warstwy. Po chwili elektron wracał w miejsce, w którym przed chwilą się znajdował, a ekscyton emitował foton z zakodowaną informacją kwantową.
Okazało się jednak, że poza fotonami i ekscytonami jest coś jeszcze. Powstawały fonony, kwazicząstki będące produktem wibracji atomowych.
W ten sposób po raz pierwszy zaobserwowano fonony w emiterze pojedynczych fotonów w dwuwymiarowym systemie atomowym. Bliższe analizy wykazały, że każdy foton emitowany w ekscytonu był powiązany z jednym lub więcej fononami. Naukowcy postanowili więc wykorzystać to zjawisko. Okazało się, że za pomocą napięcia elektrycznego mogą wpływać na energię interakcji pomiędzy fotonami i fononami. Zmiany te są mierzalne i można je kontrolować.
To fascynujące, że możemy tutaj obserwować nowy typ hybrydowej platformy kwantowej. Badając interakcję pomiędzy fononami a kwantowymi emiterami, odkryliśmy zupełnie nową rzeczywistość i nowe możliwości kontrolowania i manipulowania stanami kwantowymi. To może prowadzić do kolejnych odkryć w przyszłości, dodaje Ruoming Peng, jeden z autorów badań.
W najbliższym czasie naukowcy chcą stworzyć falowody, za pomocą których będą przechwytywali wygenerowane fotony i kierowali je w wybrane miejsca. Mają tez zamiar skalować swój system, by jednocześnie kontrolować wiele emiterów oraz fonony. W ten sposób poszczególne emitery będą mogły wymieniać informacje, a to będzie stanowiło podstawę do zbudowania kwantowego obwodu. Naszym ostatecznym celem jest budowa zintegrowanego systemu kwantowych emiterów, które mogą wykorzystywać pojedyncze fotony przesyłane za pomocą przewodów optycznych oraz fonony i używać ich do kwantowych obliczeń, wyjaśnia Li.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
Więcej o unimonie można przeczytać na łamach Nature Communications.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Komputery kwantowe mogą zrewolucjonizować wiele dziedzin nauki oraz przemysłu, przez co wpłyną na nasze życie. Rodzi się jednak pytanie, jak duże muszą być, by rzeczywiście dokonać zapowiadanego przełomu. Innymi słowy, na ilu kubitach muszą operować, by ich moc obliczeniowa miała znaczący wpływ na rozwój nauki i technologii.
Na pytanie to postanowili odpowiedzieć naukowcy z Wielkiej Brytanii i Holandii. Przyjrzeli się dwóm różnym typom problemów, jakie będą mogły rozwiązywać komputery kwantowe: złamaniu zabezpieczeń Bitcoina oraz symulowanie pracy kofaktora FeMo (FeMoco), który jest ważnym elementem białka wchodzącego w skład nitrogenazy, enzymu odpowiedzialnego za asymilację azotu.
Z AVS Quantum Science dowiadujemy się, że naukowcy stworzyli specjalne narzędzie, za pomocą którego mogli określić wielkość komputera kwantowego oraz ilość czasu potrzebnego mu do rozwiązania tego typu problemów. Obecnie większość prac związanych z komputerami kwantowymi skupia się na konkretnych platformach sprzętowych czy podzespołach nadprzewodzących. Różne platformy sprzętowe znacząco się od siebie różnią chociażby pod względem takich kluczowych elementów, jak tempo pracy czy kontrola jakości kubitów, wyjaśnia Mark Webber z University of Sussex.
Pobieranie azotu z powietrza i wytwarzanie amoniaku na potrzeby produkcji nawozów sztucznych to proces wymagający dużych ilości energii. Jego udoskonalenie wpłynęłoby zarówno na zwiększenie produkcji żywności, jak i zmniejszenie zużycia energii, co miałoby pozytywny wpływ na klimat. Jednak symulowanie odpowiednich molekuł, których opracowanie pozwoliłoby udoskonalić ten proces jest obecnie poza możliwościami najpotężniejszych superkomputerów.
Większość komputerów kwantowych jest ograniczone faktem, że wykorzystywane w nich kubity mogą wchodzić w bezpośrednie interakcje tylko z kubitami sąsiadującymi. W innych architekturach, gdzie np. są wykorzystywane jony uwięzione w pułapkach, kubity nie znajdują się na z góry ustalonych pozycjach, mogą się przemieszczać i jeden kubit może bezpośrednio oddziaływać na wiele innych. Badaliśmy, jak najlepiej wykorzystać możliwość oddziaływania na odległe kubity po to, by móc rozwiązać problem obliczeniowy w krótszym czasie, wykorzystując przy tym mniej kubitów, wyjaśnia Webber.
Obecnie największe komputery kwantowe korzystają z 50–100 kubitów, mówi Webber. Naukowcy oszacowali, że do złamania zabezpieczeń sieci Bitcoin w ciągu godziny potrzeba – w zależności od sprawności mechanizmu korekty błędów – od 30 do ponad 300 milionów kubitów. Mniej więcej godzina upływa pomiędzy rozgłoszeniem a integracją blockchaina. To czas, w którym jest on najbardziej podatny na ataki.
To wskazuje, że Bitcoin jest obecnie odporna na ataki z wykorzystaniem komputerów kwantowych. Jednak uznaje się, że możliwe jest zbudowanie komputerów kwantowych takiej wielkości. Ponadto ich udoskonalenie może spowodować, że zmniejszą się wymagania, co do liczby kubitów potrzebnych do złamania zabezpieczeń Bitcoin.
Webber zauważa, że postęp na polu komputerów kwantowych jest szybki. Przed czterema laty szacowaliśmy, że do złamania algorytmu RSA komputer kwantowy korzystający z jonów uwięzionych w w pułapce potrzebowałby miliarda fizycznych kubitów, a to oznaczało, że maszyna taka musiałaby zajmować powierzchnię 100 x 100 metrów. Obecnie, dzięki udoskonaleniu różnych aspektów tego typu komputerów, do złamania RSA wystarczyłaby maszyna o rozmiarach 2,5 x 2,5 metra.
Z kolei do przeprowadzenia symulacji pracy FeMoco komputery kwantowe, w zależności od wykorzystanej architektury i metod korekcji błędów, potrzebowałyby od 7,5 do 600 milionów kubitów, by przeprowadzić taką symulację w ciągu około 10 dni.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.