Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Krzem może być nadprzewodnikiem

Rekomendowane odpowiedzi

Krzem, najbardziej znany półprzewodnik, wykazuje też właściwości... nadprzewodzące. Francuscy uczeni udowodnili, że po wymianie 9% atomów krzemu na atomy boru, kawałek krzemu schłodzony do temperatury bliskiej zeru absolutnemu staje się nadprzewodnikiem.

Dotychczas domieszkowano krzem borem, ale liczba atomów tego pierwiastka nie przekraczała 0,002% ogólnej liczby atomów. Wiadomo było również, że dodatnie do materiału około 0,01% boru pozwala uzyskać właściwości nadprzewodzące w niskich temperaturach. Nie udało się tego jednak osiągnąć w przypadku krzemu. Osiągnęli to dopiero Francuzi z Centre National de la Recherché Scientifique w Grenoble.

Krzem jest materiałem bardzo "niechętnie” przyjmującym wszelkie zanieczyszczenia. Dlatego też naukowcy znad Sekwany musieli użyć lasera, który podgrzewał cienką warstwę krzemu. Gdy ta zaczynała wrzeć, atomy boru z otaczającego kawałek krzemu gazu dostawały się do krzemowej struktury i pozostawały tam po jej zastygnięciu.

Po odpowiednim domieszkowaniu krzemu i schłodzeniu go za pomocą ciekłego helu, materiał zyskał właściwości nadprzewodzące. Uczeni twierdzą, że uda im się nieco podnieść temperaturę, w której krzem nadal będzie nadprzewodnikiem, jednak nie na tyle, by ich odkrycie znalazło praktyczne zastosowanie w elektronice konsumenckiej.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Prawie wszystkie materiały w temperaturze zera bezwzglednego są nadprzewodnikami więc co to za sensacja, chyba że ci panowie pracują za darmo ,to by była sensacja i to w temperaturze pokojowej ;D ;D ;D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy potwierdzili, że bor, składnik domowych środków czystości, pomaga w zwiększeniu wydajności reaktorów fuzyjnych. Specjaliści z Princeton Plasma Physics Laboratory (PPPL) przeprowadzili eksperymenty, w czasie których wykazali, że pokrycie wewnętrznych elementów tokamaka borem poprawia wydajność reakcji.
      Nasze eksperymenty dokładniej pokazują, jak to działa. Pozwolą nam one ocenić, czy kontrolowane wstrzykiwanie proszku z boru może być wykorzystane w przyszłości do pomocy w pracy reaktorów fuzyjnych, mówi fizyk Alessandro Bortolon, główny autor artykułu w Nuclear Fusion.
      Fuzja jądrowa wykorzystuje procesy podobne do tych, jakie zachodzą w Słońcu. Lżejsze pierwiastki łączą się w cięższe. W ten sposób powstaje niemal niewyczerpane źródło czystej i bezpiecznej energii. Naukowcy od dziesięcioleci próbują opanować fuzję.
      Najnowsze eksperymenty wykazały, że wstrzykiwanie boru pozwala na łatwiejsze uzyskanie w plazmy o odpowiednich parametrach w tokamakach, których wewnętrzne elementy pokryte są lekkimi pierwiastkami, jak węgiel.
      Autorzy obecnych badań bazowali na eksperymentach prowadzonych wcześniej w Axially Symmetric Divertor Experiment-Upgrade (ASDEX-U) należącym do Instytutu Fizyki Plazmy im. Maxa Plancka w Niemczech. Wówczas wykazano, że dzięki wstrzykiwaniu boru możliwe jest uzyskanie wysokiej jakości plazmy w tokamaku pokrytym wolframem. Eksperymenty dla tokamaka pokrytego węglem są ważne z dwóch powodów. Po pierwsze, wiele tokamaków korzysta z tego pierwiastka. Po drugie – pokazuje to, że wstrzykiwanie boru może być przydatne w różnego rodzaju tokamakach.
      Najnowsze eksperymenty uzupełniły też lukę w wiedzy dotyczącej sposobu osadzania się boru. Intuicja podpowiada, że gdy sproszkowany bor opada na plazmę, rozpuszcza się w niej i gdzieś osadza. Dotychczas jednak nikt nie próbował nawet potwierdzić istnienia w plazmie warstwy boru. Nie było na ten temat żadnych informacji. Przeprowadzone przez nas badania są pierwszymi, podczas których bezpośrednio wykazano i zmierzono to zjawisko, dodaje Bortolon.
      Okazuje się, że warstwa boru zapobiega zanieczyszczeniu plazmy przez materiał z samego tokamaka. Materiał taki może rozrzedzić plazmę i ją zdestabilizować. Im zaś plazma bardziej czyta, tym bardziej stabilna i tokamak może dłużej działać.
      Technika wstrzykiwania boru może uzupełniać lub nawet zastąpić wykorzystywaną obecnie technikę dostarczania boru do tokamaka. W chwili obecnej uzupełnienie tokamaka o bor wymaga wyłączenia go nawet na kilka dni, a wykorzystuje się w niej toksyczne gazy.
      Wstrzykiwanie boru eliminuje te problemy. Jeśli wykorzystujesz technikę wstrzykiwania sproszkowanego boru, nie musisz wszystkiego przerywać i wyłączać tokamaka. Nie musisz też przejmować się pracą z toksycznym gazem. Nowa technika będzie niezwykle przydatna podczas przyszłej codziennej pracy tokamaków, dodaje Bortolon.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizycy z University of Rochester poinformowali o stworzeniu pierwszego w historii nadprzewodnika działającego w temperaturze pokojowej. Uzyskany przez nich związek wodoru, węgla i siarki wykazuje właściwości nadprzewodzące w temperaturze dochodzącej do 15 stopni Celsjusza. Po raz pierwszy w historii można rzeczywiście stwierdzić, że osiągnięto nadprzewodnictwo w temperaturze pokojowej, mówi Ion Errea z Uniwersytetu Kraju Basków, fizyk-teoretyk zajmujący się materią skondensowaną. Wyniki badań opublikowano na łamach Nature.
      Naukowcy od dawna poszukują nadprzewodników działających w temperaturze pokojowej. Materiały takie zrewolucjonizowałyby wiele dziedzin życia. Pozwoliłyby na bezstratne przesyłanie energii liniami wysokiego napięcia, budowę lewitujących pociągów wielkich prędkości czy stworzenie znacznie bardziej wydajnych komputerów. Niestety, opracowany przez Amerykanów materiał nigdy nie posłuży do stworzenia wspomnianych urządzeń, gdyż wykazuje właściwości nadprzewodzące przy ciśnieniu sięgającym 75% ciśnienia panującego w ziemskim jądrze.
      Ludzie od dawna marzą o nadprzewodnikach. Dlatego też mogą nie docenić tego, co zostało osiągnięte, gdyż potrzebujemy do tego wysokich ciśnień, mówi Chris Pickard z University of Cambridge.
      Teraz, gdy udowodniono, że nadprzewodnictwo w temperaturze pokojowej jest możliwe, należy jeszcze znaleźć materiał, który będzie nadprzewodnikiem przy ciśnieniu atmosferycznym. Na szczęście niektóre cechy nowego związku sugerują, że możliwe będzie znalezienie odpowiedniego materiału.
      Opór elektryczny to zjawisko, które ma miejsce, gdy przemieszczające się elektrony zderzają się z atomami metalu, w którym podróżują. W 1911 roku odkryto, że w niskich temperaturach elektrony wywołują drgania w sieci atomowej metallu, a w wyniku tych drgań elektrony łączą się w pary Coopera. Różne prawa fizyki kwantowej powodują, że pary takie przemieszczają się przez sieć krystaliczną metalu, nie napotykając na żaden opór. Jakby jeszcze tego było mało, tworzą one „nadprzewodzący płyn”, który posiada silne pole magnetyczne, pozwalające np. na osiągnięcie magnetycznej lewitacji nad nadprzewodzącymi szynami kolejowymi.
      W 1968 Neil Ashcroft z Cornell University stwierdził, że w osiągnięciu nadprzewodnictwa powinny pomóc atomy wodoru. Co prawda potrzeba jest niezwykle wysokich ciśnień, by uzyskać sieć krystaliczną wodoru, jednak praca Ashcrofta dawała nadzieję, że uda się znaleźć taki związek wodoru, dzięki któremu będzie to możliwe przy niższych ciśnieniach.
      Szybkich postępów zaczęto dokonywać w XXI wieku, kiedy to z jednej strony pojawiły się potężniejsze komputery, pozwalające na przeprowadzanie teoretycznych obliczeń i warunków, jakie powinny być spełnione, by osiągnąć nadprzewodnictwo, z drugiej zaś rozpowszechniło się użycie kompaktowych komór diamentowych, pozwalających na osiąganie bardzo wysokich ciśnień.
      Badania tego typu są bardzo kosztowne, o czym świadczy chociażby przykład z Rochester. Zespół naukowy, który pochwalił się osiągnięciem nadprzewodnictwa w temperaturze pokojowej, posiłkował się obliczeniami i intuicją. Podczas prac testowano wiele związków wodoru, z różną zawartością wodoru. Konieczne było bowiem znalezienie odpowiednich proporcji tego pierwiastka.
      Jeśli będziemy mieli zbyt mało wodoru, nie uzyskamy dobrego nadprzewodnika. Jeśli będzie go zbyt dużo, to formę metaliczną przybierze on przy ciśnieniach, które niszczą diamentowe ostrza komory. W czasie swoich badań uczeni zniszczyli dziesiątki par takich ostrzy, z których każda kosztuje 3000 USD. Budżet na diamenty to największy problem, przyznaje Ranga Dias, szef zespołu badawczego.
      Dzisiejszy sukces był możliwy dzięki wykorzystaniu osiągnięć niemieckich naukowców, którzy w 2015 roku uzyskali nadprzewodzący siarkowodór w temperaturze -70 stopni Celsjusza. Amerykanie również rozpoczęli swoją pracę od siarkowodoru. Dodali do niego metan, a całość przypiekli laserem. Byliśmy w stanie wzbogacić całość i wprowadzić do systemu odpowiednią ilość wodoru, by utrzymać pary Coopera w wysokich temperaturach, wyjasnia Ashkan Salamat.
      Naukowcy przyznają, że nie wiedzą dokładnie, jak wygląda ich materiał. Wodór jest zbyt mały, by było go widać w standardowym próbkowaniu struktury, nie wiadomo zatem, jak dokładnie wygląda sieć krystaliczna uzyskanego związku, ani nawet jaka jest jego dokładna formuła chemiczna. Uzyskane wyniki nie do końca zgadzają się też z wcześniejszymi teoretycznymi przewidywaniami. Niewykluczone, że wysokie ciśnienie w jakiś nieprzewidywalny sposób zmieniło badaną substancję, dzięki czemu udało się uzyskać tak dobre nadprzewodnictwo w temperaturze pokojowej.
      Obecnie Dias i jego grupa pracują nad dokładnym określeniem budowy swojej substancji. Gdy już będą to wiedzieli, teoretycy będą mogli przystąpić do obliczeń, pozwalających na dalsze udoskonalenie przepisu na nadprzewodnik w temperaturze pokojowej.
      Dotychczas udowodniono, że próba uzyskania działającego w temperaturze pokojowej nadprzewodnika złożonego z wodoru i jeszcze jednego pierwiastka to ślepy zaułek. Jednak trójskładnikowe związki mogą być rozwiązaniem problemu. Szczególnie obiecująco wygląda tutaj dodanie węgla do całości. Węgiel ma bardzo silne wiązania kowalencyjne i, jak się wydaje, zapobiega on rozpadaniu się par Coopera przy mniejszym ciśnieniu.
      Ciśnienie atmosferyczne będzie tutaj bardzo dużym wyzwaniem. Ale jeśli do równania dodamy węgiel, to jest to bardzo dobry prognostyk na przyszłość, mówi Eva Zurek z zespołu obliczeniowego, który współpracuje z grupą Diasa.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy wykorzystujący Advanced Photon Source z Argonne National Laboratory badają materiał, w których zaobserwowano zjawisko nadprzewodnictwa istniejące w temperaturze -23 stopni Celsjusza. To o około 50 stopni wyższa temperatura niż dotychczasowy rekord.
      Mimo, że nadprzewodnictwo pojawia się w ekstremalnie wysokim ciśnieniu, to i tak mamy tutaj do czynienia z wielkim postępem. Ostatecznym celem jest wykorzystanie nadprzewodnictwa w codziennych zastosowaniach.
      Naukowcy określili dwa warunki, które definiują materiały, które nadają się na nadprzewodniki. Materiał musi umożliwiać przewodzenie prądu bez oporów oraz być odpornym na działanie pola magnetycznego, które nie może go penetrować.
      Dotychczas nadprzewodnictwo uzyskiwano po schłodzeniu materiału do bardzo niskich temperatur. Jednak takie chłodzenie jest niezwykle kosztowne i znacząco obniża możliwość zastosowania tej technologii.
      Ostatnie badania teoretyczne wykazały, że nowe klasy hybryd mogą wykazywać nadprzewodnictwo w wysokich temperaturach. Naukowcy z Instytutu Chemii im. Maksa Plancka połączyli siły z University of Chicago. Razem stworzyli materiał o nazwie superwodorek lantanu, przetestowali go pod kątem nadprzewodnictwa oraz określili jego strukturę i skład.
      Jedynym problemem jest fakt, że materiał ten wykazuje nadprzewodnictwo przy ciśnieniu 150–170 GPa. To ciśnienie około 1,5 miliona razy większe niż ciśnienie atmosferyczne na poziomie morza.
      W materiale zauważono trzy z czterech cech charakterystycznych dla nadprzewodnictwa. Zaniknęła oporność, pod wpływem zewnętrznego pola magnetycznego zmniejszyła się temperatura krytyczna oraz doszło do zmiany temperatury gdy niektóre pierwiastki zastąpiono innymi izotopami. Czwarta z cech, efekt Meissnera, czyli zanik pola magnetycznego w nadprzewodniku, nie został zaobserwowany. Stało się tak dlatego, że badano na tyle małą próbkę materiału, iż zjawiska tego nie można było wykryć.
      Temperatura, przy jakiej zaobserwowano nadprzewodnictwo, naturalnie występuje w wielu miejscach na świecie. To zaś daje nadzieję, że w końcu uda się stworzyć materiał, w którym nadprzewodnictwo pojawi się w temperaturze pokojowej, a przynajmniej przy 0 stopniach Celsjusza.
      Obecnie naukowcy pracują nad nowym materiałem, który wykaże nadprzewodnictwo w warunkach jeszcze bardziej zbliżonych do naturalnych. Naszym następnym celem jest zmniejszenie ciśnienia, przy którym syntetyzowane są próbki, zwiększenie temperatury tak, by była bliższa pokojowej, a być może stworzenie materiału, który powstaje przy wysokim ciśnieniu, ale nadprzewodnictwo występuje w nim przy ciśnieniu atmosferycznym, stwierdzili naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po dziesięciu latach pracy naukowcom z Princeton University udało się skonstruować system, który pozwala na kontrolowanie spinu elektronów w krzemie nawet przez 10 sekund. Wydłużenie czasu, w którym można kontrolować spin elektronów jest niezbędne do skonstruowania praktycznego komputera kwantowego. Dotychczas udawało się utrzymać spin elektronów przez ułamki sekund. Stany kwantowe są bardzo nietrwałe i pod wpływem czynników zewnętrznych dochodzi do ich utraty, czyli dekoherencji. Kwantowy bit, na którym mają pracować kwantowe komputery, traci swoje właściwości i staje się „zwykłym“ bitem, przyjmującym w danym momencie tylko jedną wartość, zamiast wcześniejszych wszystkich możliwych wartości.
      Profesor Stephen Lyon i Alexei Tyryshkin, który są autorami najnowszego osiągnięcia, mówią, że kluczem do sukcesu było użycie niezwykle czystej próbki krzemu-28. Częściowo zawdzięczamy to udoskonaleniu metody pomiaru, ale większość zależy od materiału. To najczystsza próbka, jakiej dotychczas używaliśmy - mówi Lyon.
      Naukowcy zamknęli kawałek krzemu-28 w stalowym cylindrze wypełnionym helem. Wewnątrz panowała temperatura 2 kelwinów. Cylinder znajdował się pomiędzy dwoma pierścieniami, które miały za zadanie kontrolować pole magnetyczne wokół próbki. Po potraktowaniu krzemu mikrofalami doszło do skoordynowania spinów około 100 miliardów elektronów. Zaszła zatem koherencja i została ona utrzymana przez niewiarygodnie długie 10 sekund. Jej utrzymanie jest niezwykle ważne dla komputerów kwantowych, gdyż działające na nich oprogramowanie będzie potrzebowało czasu np. na korekcję błędów czy i operacje na danych. Muszą być one zatem dostępne na tyle długo, by program zakończył pracę z nimi.
      Stan kwantowy może zostać zniszczony przez naturalne pole magnetyczne materiałów. Dlatego też zdecydowano się na wykorzystanie krzemu-28, który, w przeciwieństwie do tradycyjnie używanego krzemu-25 ma niezwykle słabe pole magnetyczne.
      Projekt rozpoczął się 10 lat temu. Steve przyszedł do mnie i powiedział, żebyśmy wykorzystali próbkę wolną od innych izotopów - wspomina Tyryshkin. Po trzech latach badań uczeni byli wstanie utrzymać koherencję przez 600 mikrosekund. Przez kolejne lata wypróbowywali różne materiały.
      W końcu dzięki Avogadro Project, którego celem jest opracowanie nowej definicji kilograma, udało się uzyskać próbkę niezwykle czystego krzemu-28. Międzynarodowa współpraca dała niezwykłe wyniki. Zwykle w krzemie-28 znajduje się nawet 50000 części na milion krzemu-29, do tego dochodzą inne zanieczyszczenia, które mają silne pole magnetyczne. W oczyszczonym krzemie-28 liczba atomów krzemu-29 nie przekracza 50 na milion. Taka próbka była... zbyt czysta. Dodano do niej nieco fosforu, by była ona na tyle aktywna elektrycznie, żeby reagować na mikrofale. To właśnie ta reakcja, którą Lyon i Tyryshkin nazywają „echem“, gdyż są to mikrofale emitowane przez próbkę, pozwala na odczytanie spinu elektronów.
      Bardzo trudne było znalezienie odpowiedniej liczby atomów fosforu. Ich zbyt duża liczba oznaczałaby powstanie w próbce zbyt silnego pola magnetycznnego. Z kolei za mało fosforu dałoby zbyt słabe „echo“, którego nie można by odczytać. Istotne było też znaczne obniżenie temperatury próbki, gdyż w temperaturze pokojowej elektrony fosforu są zbyt aktywne. „Uspokajają się“ dopiero w temperaturze bliskiej zeru absolutnemu.
      Warto w tym miejscu przypomnieć, że już wcześniej innym zespołom naukowym udało się kontrolować spin elektronów przez równie długi czas. Wykonano nawet pewne operacje matematyczne. Jednak do eksperymentów używano jonów zamkniętych w komorach próżniowych. Lyon i Tyryshkin skupili się na krzemie, gdyż uważają, że jest on znacznie bardziej praktyczny. Współczesna elektronika już wiele dekad temu zrezygnowała przecież z lamp elektronowych na rzecz krzemu.
    • przez KopalniaWiedzy.pl
      Współpraca naukowców z University of New South Wales, Melbourne University i Purdu University zaowocowała stworzeniem najmniejszego połączenia elektrycznego umieszczonego na krzemie. Ma ono grubość 1 atomu i szerokość 4 atomów. Mimo tak niewielkich rozmiarów transport elektronów odbywa się równie wydajnie co za pomocą tradycyjnego połączenia miedzianego.
      Osiągnięcie to ma olbrzymie znacznie na wielu polach rozwoju elektroniki i inżynierii. Pozwoli w przyszłości na dalsze zmniejszanie rozmiaru układów scalonych. Ponadto daje nadzieję na wykorzystanie w komputerach kwantowych techniki precyzyjnego wzbogacania krzemu pojedynczymi atomami.
      Prace australijsko-amerykańskiego zespołu wykazały też, że prawo Ohma ma zastosowanie w skali atomowej. To niesamowite, że Prawo Ohma, prawo tak podstawowe, zostaje zachowane przy budowaniu połączeń elektrycznych z pojedynczych cegiełek natury - stwierdził Bent Weber, jeden z twórców miniaturowych kabli. Badacze podkreślają, że połączenia były tworzone atom po atomie, co znacząco różni się od technik stosowanych we współczesnej elektronice. Obecnie usuwa się nadmiarowy materiał, a to technika trudna, kosztowna i nieprecyzyjna. Gdy schodzi się do wielkości poniżej 20 atomów, mamy do czynienia z takimi różnicami w liczbie atomów, że dalsze skalowanie jest trudne. Ale podczas tego eksperymentu stworzono urządzenie dzięki umieszczaniu pojedynczych atomów fosforu na krzemie i okazało się, że gęsto ułożony przewód o szerokości zaledwie 4 atomów działa tak, jak przewody metalowe - powiedział profesor Gerhard Klimeck z Purdue.
      Jak poinformowała profesor Michelle Simmons z University of New South Wales, która kierowała badaniami, głównym celem badań jest rozwój przyszłych komputerów kwantowych, w których pojedyncze atomy są wykorzystywane do przeprowadzania obliczeń.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...