Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Ziemski „czołg” zaatakuje Jowisza
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Któż by się spodziewał, że kanapka z wołowiną może stać się przedmiotem dyskusji podczas uchwalania budżetu NASA przez Izbę Reprezentantów, a w jej sprawie będzie wypowiadał się sam szef NASA, James Webb (tak, tak, ten od Teleskopu Webba)? A jednak...
Misja Gemini III (23 marca 1965) była pierwszą załogową misją w ramach projektu Gemini i 7. amerykańską misją załogową w historii. Udział w niej wzięli Virgil „Gus” Grissom i John Young. Trwała niecałe 5 godzin, ale w jej ramach NASA chciała przetestować m.in. system wyżywienia astronautów dla planowanych dłuższych misji. Astronauci mieli sprawdzić szczelność plastikowych torebek z liofilizowaną żywnością, system dostarczania wody do torebek, system pozbywania się śmieci.
Już podczas treningu na Ziemi Grissom narzekał na okropny smak kosmicznego jedzenia. Sam Young określał niektóre dania jako „ledwie możliwe do przełknięcia”, a jeszcze inny astronauta opisywał posiłki serwowane załogom misji Gemini jako „dziwaczne”. Jedzenie było tak okropne, że podczas naziemnego treningu, który odbywał się m.in. w panamskiej dżungli, przez dwa pierwsze dni astronauci woleli w ogóle nie jeść. Trzeciego dnia pokonał ich głód. Sytuację pogarszał fakt, że liofilizowaną masę musieli najpierw nawodnić zimną wodą. Z ciepłą dałoby się to jeszcze jakoś przełknąć. Ale na pokładzie była tylko zimna.
Young postanowił zrobić przyjemność bardziej doświadczonemu koledze. Przed startem poprosił innego astronautę, Waltera Schirrę, o kupno w pobliskim barze kanapki z marynowaną wołowiną. Gdy Grissom i Young szli w kierunku stanowiska startowego, Schirra podał Youngowi kanapkę, a ten schował ją do kieszeni skafandra.
Dwie godziny po starcie Young miał za zadanie rozpocząć eksperyment z żywnością. Wyjął więc kanapkę z kieszeni i zaproponował ją swojemu dowódcy. To, co działo się w kabinie, zarejestrowały systemy komunikacji z Ziemią. Young zapytał Grissoma, czy chce. Grissom zapytał, co to i skąd to jest, na co Young odpowiedział, że zabrał ze sobą. Jednak gdy Grissom ugryzł kanapkę poczuł w ustach okruszki. Schował więc kanapkę do kieszeni, by okruszki nie zaczęły unosić się w kabinie.
Dwa dni później, podczas konferencji prasowej, na której zgromadzili się dziennikarze z całego świata, padło pytanie o kanapkę. Young wydawał się zaskoczony. Najpierw zapytał, skąd dziennikarz o tym wie, a potem wybuchnął śmiechem i stwierdził, że Grissom ją zjadł.
Astronauta z pewnością nie spodziewał się, że jego kanapką zajmie się niezwykle poważne grono. Dnia 5 kwietnia 1965 roku podkomitecie Izby Reprezentantów, który był częścią komitetu decydującego o wydatkowaniu pieniędzy budżetowych, trwała m.in. dyskusja na temat kolejnego budżetu NASA.
Dyskusja zeszła na program Gemini. W pewnym momencie deputowany George E. Shipley zapytał dyrektora NASA, Jamesa Webba, dlaczego Agencja zmniejsza finansowanie programu. Odpowiedzi udzielił wicedyrektor ds. misji załogowych, George Mueller, który wyjaśnił, że w związku z zakończeniem testów naziemnych spadły też koszty misji.
W pewnym momencie Shipley stwierdził: To bardzo udany program. Proszę mi powiedzieć o ostatniej misji oraz o kanapce, która znalazła się na pokładzie. Czy Pan to zatwierdził? [...] Myślę, że po wydaniu takich pieniędzy i przeznaczeniu takiej ilości czasu, wniesienie na pokład pojazdu kanapki jest czymś niewłaściwym. [...] Czytałem artykuł, z którego wynikało, że okruszki z kanapki latały po całej kabinie. Wiem, ze wszystko sterylizujecie i dokładnie czyścicie, że pojazd jest niemal jak sala operacyjna, a tutaj ktoś wnosi kanapkę. Co Pan o tym myśli?.
Pomiędzy Shipleyem a urzędnikami NASA wywiązała się utarczka słowna, którą przerwał jeden z deputowanych pytaniem, czy kanapka zagroziła powodzeniu misji. Przedstawiciele NASA zapewnili, że nie. W końcu włączył się w to dyrektor Webb, który przyznał Shipleyowi rację, że takie rzeczy nie powinny mieć miejsca. Dodał, że program kosmiczny jest zbyt ważny, by można było pozwolić astronautom na samodzielne decydowanie, co mogą ze sobą zabrać.
Webb miał rację, gdyż narażenie na niebezpieczeństwo dopiero rozwijającego się programu załogowych misji kosmicznych mogłoby stanowić poważne utrudnienie w realizacji tak ważnego celu, jakim było lądowanie człowieka na Księżycu. Szczególnie w obliczu ostrej rywalizacji ze Związkiem Radzieckim.
Od czasu misji Gemini IV NASA wdrożyła ściślejsze reguły, zgodnie z którymi każdy astronauta ma obowiązek przedstawić do akceptacji listę przedmiotów, jakie chce ze sobą zabrać. Zabronione są kanapki czy ciężkie przedmioty z metalu.
Pomimo krytycznej uwagi dyrektora Webba, Young nie dostał nawet nagany za swoje zachowanie. A kanapka nie przeszkodziła mu w jego rozwijającej się i – jak się z czasem okazało – wyjątkowej karierze. Był pierwszym astronautą w historii, który poleciał w kosmos sześciokrotnie (2xGemini, 2xApollo, 2xSTS), pierwszym dowódcą promu kosmicznego i przez 13 lat był dyrektorem Astronaut Office, które zarządza astronautami, a szef biura osobiście decyduje, kto zostanie dowódcą, pilotem czy specjalistą danej misji. Ciekawe, czy w tej roli uczulał swoich młodszych kolegów, by nie brali ze sobą kanapek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Pełniący obowiązki administratora NASA Sean Duffy, wydał dyrektywę, której celem jest przyspieszenia budowy reaktora atomowego na powierzchni Księżyca. Agencja niejednokrotnie prowadziła prace nad reaktorami służącymi eksploracji kosmosu. Dotychczas żaden nie przyniósł oczekiwanych rezultatów. Administracja prezydenta Trumpa – w obliczu rosnącej konkurencji ze strony Chin i Rosji – chce wreszcie doprowadzić tę kwestię do końca.
Chiny i Rosja mają ambitne plany. Chcą do połowy lat 30. wybudować w pobliżu bieguna południowego Księżyca stację zasilaną energią jądrową. Biegun południowy znajduje się też w kręgu zainteresowań USA, które chcą w 2027 roku wysłać tam misję załogową. W tamtym regionie znajdują się wiecznie zacienione kratery, zawierające zamarzniętą wodę, którą można wykorzystać zarówno do picia, jak i do produkcji paliwa.
Prezydent Trump już w czasie swojej pierwszej kadencji naciskał na zorganizowanie załogowej misji na Księżyc. W 2022 roku NASA, zainspirowana częściowo polityką byłego już wówczas prezydenta, prowadziła projekt, w ramach którego trzy firmy otrzymały po 5 milionów dolarów na opracowanie koncepcji niewielkiego, 40-kilowatowego reaktora atomowego o masie nie przekraczającej 6 ton.
Projekt Duffy'ego jest bardziej ambitny. Reaktor ma mieć moc co najmniej 100 kW i być gotowy do wystrzelenia w 2029 roku. Teraz NASA ma 30 dni na wyznaczenie urzędnika, który będzie nadzorował cały projekt i 60 dni na opublikowanie oferty dla partnerów.
Powstanie takiego reaktora na Księżycu może pozwolić też USA de facto na przecięcie niewielkiej części Srebrnego Globu. Traktat o przestrzeni kosmicznej zabrania co prawda jakiemukolwiek państwu zawłaszczania jakiegokolwiek fragmentu przestrzeni kosmicznej czy ogłaszania swojego zwierzchnictwa nad nim, jednak ten sam traktat mówi, o konieczności poszanowania uzasadnionych interesów innych państw. To zaś może oznaczać, że w pewnej odległości od takiego reaktora inne państwa nie będą mogły prowadzić żadnej działalności mogącej utrudnić jego działanie. De facto mogłaby powstać w jego pobliżu wyłączna strefa zarządzana przez USA.
Wielu ekspertów wątpi, czy rok 2029 jest realistycznym terminem wysłania na Księżyc reaktora atomowego. Tym bardziej, że – ich zdaniem – zorganizowanie misji załogowej w 2027 roku też jest zbyt ambitnym celem.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czy można naprawić urządzenie, które znajduje się w odległości ponad 600 milionów kilometrów i uległo mechanicznemu uszkodzeniu? Jak się okazuje, można. Dokonali tego naukowcy odpowiedzialni za misję Juno krążącą na orbicie Jowisza. Naukowcy z Southwest Research Institute właśnie podzielili się szczegółami niezwykłego przedsięwzięcia, jakiego podjęli się w grudniu 2023 roku.
JunoCam to kamera działająca w kolorze i w zakresie światła widzialnego, której głównym celem jest robienie zdjęć przeznaczonych dla opinii publicznej. W ten sposób NASA chce zwiększyć zainteresowanie przeciętnego zjadacza chleba misjami w kosmosie. Dostarczone przez nią obrazy przyczyniły się też do dokonania ważnych odkryć. Jednostka optyczna JunoCam znajduje się poza wzmocnioną tytanem osłoną przed promieniowaniem, która chroni instrumenty naukowe Juno przed szkodliwym promieniowaniem kosmicznym.
Twórcy misji byli przekonani, że JunoCam przetrwa osiem orbit wokół Jowisza, nie wiedzieli jednak, jak będzie sprawowała się dalej. Okazało się, ze przez pierwsze 34 orbity kamera pracowała niemal idealnie. Podczas 47. orbity na zdjęciach zaczęły pojawiać się błędy. Inżynierowie wiedzieli, że prawdopodobną przyczyną uszkodzenia jest promieniowanie, jednak który element uległ uszkodzeniu? Zaczęto szukać odpowiedzi i okazało się, że doszło do uszkodzenia regulatora napięcia. Opcji naprawy zepsutego urządzenia, znajdującego się ponad 600 milionów kilometrów od Ziemi nie było zbyt wiele. Eksperci zdecydowali się na wyżarzanie. To technika obróbki metali, podczas której materiał jest podgrzewany, utrzymywany w wysokiej temperaturze, a następnie powoli studzony. Mimo, że proces ten nie jest do końca przez naukę rozumiany, może on prowadzić do zmniejszenia liczby defektów w materiale.
Wiedzieliśmy, że wyżarzanie może czasem zmienić strukturę takiego materiału jak krzem na poziomie mikroskopowym. Nie wiedzieliśmy, czy to coś pomoże. Nakazaliśmy więc jednemu z podgrzewaczy JunoCam podniesienie temperatury do 25 stopni Celsjusza – to dużo cieplej niż typowa temperatura pracy kamery – i czekaliśmy wstrzymując oddech, mówi Jacob Schaffner z Malin Space Science Systems, który zaprojektował kamerę.
Wkrótce po wyżarzaniu kamera zaczęła dostarczać obrazów dobrej jakości, jednak pojazd coraz bardziej zbliżał się do planety, był narażony na coraz silniejsze promieniowanie. I do 55. orbity błędy były już na wszystkich zdjęciach. Eksperci próbowali różnych metod obróbki obrazu, ale nic nie pomagało. Zostało kilka tygodni do przelotu w pobliżu księżyca Jowisza, Io. Postanowiliśmy postawić wszystko na jedną kartę, maksymalnie rozgrzać podgrzewacz JunoCam i przekonać się, czy więcej wyżarzania coś da, stwierdził Michael Ravine.
Obrazy przesłane w pierwszym tygodniu wyżarzania były nieco lepsze. Później zaś doszło do dramatycznej poprawy jakości obrazu. Do dnia 30 grudnia 2023 roku, kiedy Juno przeleciała zaledwie 1500 kilometrów od powierzchni Io, JunoCam pracowała niemal tak dobrze, jak w dniu wystrzelenia misji.
Do dzisiaj satelita Juno okrążył Jowisza 74 razy. Podczas ostatniej, 74. orbity, znowu pojawiły się błędy na zdjęciach. Inżynierowie mają nadzieję, że kolejne wyżarzanie ponownie poprawi jakość fotografii.
Od czasu pierwszych eksperymentów z naprawą JunoCam zespół odpowiedzialny za misję zastosował różne wersje wyżarzania w różnych instrumentach naukowych i podsystemach inżynieryjnych. Uzyskano świetne wyniki. Juno uczy nas, jak zbudować i utrzymywać pojazd kosmiczny zdolny do tolerowania promieniowania. To ważna lekcja nie tylko dla misji Juno, ale też dla satelitów krążących wokół Ziemi. Sądzę, że zdobyte doświadczenia zostaną zastosowane w przypadku satelitów wojskowych i komercyjnych oraz w innych misjach NASA, główny naukowiec misji Juno z Southwest Research Institute, Scott Bolton.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie nazywają Jowisza „architektem” Układu Słonecznego. Jego potężne pole grawitacyjne odegrało ważną rolę w ukształtowaniu orbit pozostałych planet, wpłynęło na kształt ich dysków protoplanetarnych. Teraz profesorowie Konstantin Batygin z California Institute of Technology i Fred C. Adam z University of Michigan poinformowali na łamach Nature Astronomy, że w przeszłości Jowisz był znacznie większy i wywierał znacznie silniejsze oddziaływanie grawitacyjne.
Naszym celem jest zrozumienie, skąd się wzięliśmy. Żeby to wiedzieć, musimy poznać wczesne fazy formowania się planet. To prowadzi nas do zrozumienia, a jaki sposób swój obecny kształt nabył nie tylko Jowisz, ale cały Układ Słoneczny, stwierdza Batygin.
Naukowcy przyjrzeli się niewielkim księżycom Jowisza, Amaltei i Tebe. Orbity obu są nieco nachylone względem Jowisza, naukowcy wykorzystali je do obliczenia pierwotnej wielkości Jowisza. Z obliczeń tych wynika, że 3,8 miliona lat po tym, jak uformowały się pierwsze planety skaliste Układu Słonecznego, Jowisz miał dwukrotnie, a może nawet dwuipółkrotnie, większą średnicę niż obecnie. Jego pole magnetyczne było zaś 50-krotnie silniejsze niż obecnie. Nasze obliczenia są całkowicie zgodne z teorią o formowaniu się olbrzymich planet i pozwalają na wgląd w system Jowisza pod koniec istnienia mgławicy przedsłonecznej - czytamy na łamach Nature Astronomy.
Ważnym aspektem badań jest oparcie się przez naukowców na danych, które nie są obarczone takim poziomem niepewności jak zwykle używane modele, w których przyjmuje się założenia odnośnie przejrzystości gazu, tempa akrecji czy masy jądra formującej się planety. Batygin i Adams wykorzystali dynamikę orbitalną księżyców Jowisza oraz moment pędu samej planety, czyli wartości, które można bezpośrednio zmierzyć.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.