Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Kiedy stajemy się rozgniewani, wzrastają tętno, produkcja testosteronu oraz ciśnienie krwi, a spada stężenie hormonu stresu kortyzolu. Badacze z Uniwersytetu w Walencji wspominają też o tym, że lewa półkula mózgu staje się bardziej pobudzona (Hormones and Behavior).

Wywołanie emocji prowadzi do głębokich zmian w autonomicznym układzie nerwowym, który kontroluje reakcję sercowo-naczyniową, a także układ endokrynny. Dodatkowo pojawiają się zmiany w aktywności mózgowej, zwłaszcza w płatach czołowym i skroniowym – opowiada Neus Herrero, główny autor studium.

Naukowcy badali mózgowe zjawiska związane z gniewem na grupie 30 mężczyzn. Podczas eksperymentu posłużyli się zaadaptowaną do warunków hiszpańskich procedurą indukcji gniewu AI (od ang. Anger Induction). Składa się ona z 50 stwierdzeń sformułowanych w pierwszej osobie liczby pojedynczej, które dotyczą codziennych sytuacji prowokujących gniew. Przed i po próbie wywołania złości badanym mierzono puls i ciśnienie, stężenia testosteronu i kortyzolu, asymetryczną aktywację mózgu (wykorzystano tu technikę nazywaną słuchaniem dychotycznym, w ramach której do obojga uszu podaje się jednocześnie różne bodźce dźwiękowe), ogólny stan umysłu oraz subiektywne doświadczanie gniewu.

Okazało się, że po zakończeniu procedury mężczyźni czuli się rozzłoszczeni, a swoje nastawienie opisywali jako bardziej negatywne. Zmianie ulegały też parametry psychobiologiczne: wzrastało tętno, ciśnienie krwi oraz poziom testosteronu, opadało jednak stężenie kortyzolu.

Jeśli weźmiemy pod uwagę asymetryczną aktywność płatów czołowych podczas doświadczania różnych emocji, okaże się, że chcąc dopasować gniew do któregoś z dwóch obowiązujących modeli, trzeba się dobrze zastanowić. Pierwszy model emocjonalnej walencji (znaku emocji) sugeruje, że lewy płat czołowy jest związany z doświadczaniem pozytywnych emocji, a prawy ma więcej wspólnego z emocjami negatywnymi. Drugi model kierunku motywacji utrzymuje, że lewy płat czołowy bierze udział w doświadczaniu uczuć związanych z bliskością (czyli pozytywnych, np. szczęścia), a prawy odpowiada za emocje wywołujące wycofanie (negatywne, np. strach).

Przypadek złości jest jedyny w swoim rodzaju, ponieważ doświadczamy jej jako czegoś negatywnego, ale często wywołuje ona motywację do zbliżania się. Podczas wywoływania złości obserwowaliśmy w ramach naszego studium wzrost przewagi prawego ucha, co wskazuje na silniejszą aktywację lewej półkuli i stanowi dowód popierający model kierunku motywacji – tłumaczy Herrero. Kiedy stajemy się zagniewani, asymetryczna reakcja mózgu jest mierzona motywacją do przybliżania się do bodźca, który wywołuje gniew, by go wyeliminować, a nie tym, że uznajemy ten bodziec za negatywny.

Share this post


Link to post
Share on other sites

A swoją drogą to zdjęcie bardziej przypomina mi emocje agresji (jeśli to są emocje?) a nie gniewu 8). I myślałem, że testosteron to też agresja, poza tym wedle "powszechnie uznawanej prawdy" stereotypu kobiety częściej się gniewają  8) ???

Share this post


Link to post
Share on other sites

Mocno ciekawe: w czasie gniewu spada poziom kortyzolu-"hormonu stresu".Wyciągam wniosek że "gniew" już od tego badania nie jest stresem  :D.

wedle "powszechnie uznawanej prawdy" stereotypu kobiety częściej się gniewają 

ale My szybciej  :D

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Podczas gdy dorośli przetwarzają różne zadania w wyspecjalizowanych obszarach mózgu w jednej z półkul, niemowlęta i dzieci używają do tego celu obu półkul. To może być przyczyną, dla której dzieci znacznie łatwiej regenerują się po urazach mózgu niż dorośli. Autorzy najnowszych badań skupili się na języku i odkryli, że dzieci podczas przetwarzania języka mówionego używają obu półkul mózgu.
      To bardzo dobra wiadomość dla dzieci, które odniosły urazy mózgu. Użycie obu półkul zapewnia mechanizm kompensujący po urazie. Na przykład, jeśli w wyniku udaru zaraz po urodzeniu dojdzie do uszkodzenia lewej półkuli mózgu, dziecko nauczy się języka korzystając z prawej półkuli. Dziecko z mózgowym porażeniem dziecięcym, które uszkodzi tylko jedną półkulę, może rozwinąć wszystkie potrzebne zdolności poznawcze w drugiej półkuli. Nasze badania pokazują, jak to jest możliwe, mówi profesor Elissa L. Newport, dyrektor Center for Brain Plasticity and Recovery, które jest wspólnym przedsięwzięciem Georgetown University i MedStar National Rehabilitation Network.
      Niemal wszyscy dorośli przetwarzają mowę tylko w lewej półkuli. Potwierdzają to zarówno badania obrazowe jak i fakt, że po udarze, który dotknął lewą półkulę, ludzie często tracą zdolność do przetwarzania mowy.
      Jednak u bardzo małych dzieci uraz jednej tylko półkuli rzadko prowadzi do utraty zdolności językowych. Nawet, jeśli dochodzi do poważnego zniszczenia lewej półkuli, dzieci nadal potrafią korzystać z języka. To zaś sugeruje – jak zauważa Newport – że dzieci przetwarzają język w obu półkulach. Jednak tradycyjne metody obrazowania nie pozwalały na obserwowanie tego zjawiska. Nie było jasne, czy dominacja lewej półkuli w zakresie zdolności językowych jest widoczna już od urodzenia, czy rozwija się z wiekiem, stwierdza uczona.
      Teraz, dzięki funkcjonalnemu rezonansowi magnetycznemu udało się wykazać, że u małych dzieci żadna z półkul nie ma w tym zakresie przewagi. Lateralizacja pojawia się z wiekiem. Ustala się ona w wieku 10-11 lat.
      W najnowszych badaniach udział wzięło 39 zdrowych dzieci w wieku 4–13 lat, których wyniki porównano z 14 dorosłymi w wieku 18–29 lat. Obie grupy zmierzyły się z zadaniem polegającym na rozumieniu zdań. W czasie rozwiązywania zadania każdy z uczestników poddany był skanowaniu za pomocą fMRI, a wyniki potraktowano indywidualnie. Później stworzono mapę aktywności mózgu dla grup wiekowych 4–6 lat, 7–9 lat, 10–13 lat i 18–29 lat.
      Badacze stwierdzili, że wyniki uśrednione dla każdej z grup pokazują, iż nawet u małych dzieci występuje preferencja (lateralizacja) lewej półkuli mózgu w czasie przetwarzania mowy. Jednak znaczny odsetek najmłodszych dzieci wykazuje silną aktywację prawej półkuli mózgu. U osób dorosłych prawa półkula aktywuje się podczas rozpoznawania ładunku emocjonalnego niesionego z głosem. Natomiast u dzieci bierze ona udział i w rozpoznawaniu mowy i w rozpoznawaniu ładunku emocjonalnego.
      Naukowcy sądzą, że jeśli udałoby im się przeprowadzić podobne badania u jeszcze młodszych dzieci, to obserwowaliby jeszcze większe zaangażowanie prawej półkuli mózgu w przetwarzanie języka.
      Obecnie Newport i jej grupa skupiają się na badaniach przetwarzania mowy w prawej półkuli mózgu u nastolatków i młodych dorosłych, u których lewa półkula mózgu została poważnie uszkodzona podczas udaru zaraz po urodzeniu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Okazuje się, że na utratę wagi w wyniku zmiany stylu życia na zdrowszy oraz na rozkład tłuszczu w organizmie wpływa wrażliwość mózgu na insulinę. Długoterminowe badania prowadzone  Niemieckie Centrum Badań nad Cukrzycą, Centrum Helmholza w Monachium oraz Szpital Uniwersytecki w Tybindze wykazały, że jeśli nasz mózg jest wrażliwy na obecność insuliny, możemy bardziej stracić na wadze, pozbyć się niezdrowego tłuszczu brzusznego i łatwiej utrzymać niską wagę przez lata. Jeśli jednak nasz mózg słabo reaguje na insulinę, to początkowo stracimy mniej kilogramów, z czasem ponownie przybierzemy na wadze, a na brzuchu zgromadzimy więcej tkanki tłuszczowej.
      Osoby o mózgach bardziej wrażliwych na insulinę zyskiwały na stosowaniu diety i ćwiczeń. Znacznie traciły na wadze i pozbywały się tkanki tłuszczowej z brzucha. Nawet gdy przestawały ćwiczyć i stosować dietę, to w czasie kolejnych dziewięciu lat gdy je obserwowaliśmy, przybierały niewiele tłuszczu, mówi doktor Martin Heni ze Szpitala Uniwersyteckiego w Tybindze, który stał na czele grupy badawczej.
      Z kolei u osób o mózgu mało wrażliwym lub niewrażliwym na insulinę zanotowano niewielką utratę wagi w ciągu 9 miesięcy od zmiany stylu życia na zdrowszy.
      Uczestnicy badań na 24 miesiące zmienili styl życia na taki, który sprzyjał zmniejszeniu wagi. Po 9 miesiącach przeciętna osoba, której mózg był wrażliwy na insulinę, straciła na wadze około 4,5 kilogramów, a osoba o niewrażliwym mózgu – około 0,5 kg. W kolejnych miesiącach osoby z mózgami wrażliwymi nadal traciły na wadze i po 24 miesiącach średnia utrata wagi wynosiła u nich niemal 6 kg. Przez kolejnych 76 miesięcy osoby te nie stosowały już nowego stylu życia, a mimo to przybrały na wadze jedynie około 0,5 kg.
      Zupełnie inaczej wyglądała sytuacja w przypadku osób o mózgach mało wrażliwych lub niewrażliwych na insulinę. Na wadze traciły jedynie przez 9 miesięcy. Następnie do 24. miesiąca stosowania zdrowszego trybu życia ich waga rosła i po 24 miesiącach była o około 1 kg wyższa niż przed rozpoczęciem badań. Utrzymywała się na wyższym poziomie przez kolejnych 76 miesięcy.
      Podobnie rzecz się miała z tłuszczem brzusznym. Osoby o bardziej wrażliwych mózgach traciły go więcej w wyniku ćwiczeń i diety bogatej w włókna roślinne, a po przerwaniu zdrowego trybu życia wolniej ponownie go zyskiwały. Tkanka tłuszczowa na brzuchu jest bardzo niekorzystna, gdyż jej obecność jest silnie powiązana z cukrzycą, ryzykiem chorób układu krążenia i nowotworów.
      Jak zauważyli autorzy w podsumowaniu swoich badań spostrzeżenia te wykraczają poza zakres chorób metabolicznych i wskazują na konieczność opracowania strategii radzenia sobie z opornością ludzkiego mózgu na insulinę.

      « powrót do artykułu
    • By Szkoda Mojego Czasu
      Przepraszam, że nie w temacie, ale chyba powinniśmy się zacząć poważnie bać "ekspertów" od zdrowia publicznego.  Poniżej wypowiedź jednego, a jeszcze niżej wykres jak  naprawdę wygląda ilość już wykrytych mutacji w stosunku do innych wirusów.
      "Profesor odniósł się również do doniesień na temat mutowania koronawirusa SARS-CoV-2: - Ten wirus mutuje bardzo niewiele, jest relatywnie stały, nie zaskakuje nas i na razie niczym nie grozi. Zmiany w mutacji są bardzo niewielkie - powiedział. Horban porównał też SARS-CoV-2 do wirusa grypy. Ten drugi mutuje znacznie szybciej i "właściwie to jest co roku nowy wirus i nie jesteśmy w stanie zrobić szczepionki, która zabezpieczy nas raz na zawsze".

    • By KopalniaWiedzy.pl
      U dzieci, które na początku życia były narażone na kontakt z dużą ilością zanieczyszczeń pochodzących z ruchu samochodowego, w wieku 12 lat występują zmiany strukturalne w budowie mózgu. Jak wynika z badań przeprowadzonych przez Centrum Medyczne Szpitala Dziecięcego w Cincinnati, u dzieci takich wyraźnie widać mniej istoty szarej oraz cieńszą korę mózgową w porównaniu z dziećmi, które były narażone na niższy poziom zanieczyszczeń.
      Chociaż są to wstępne badania, to ich wyniki wskazują, że miejsce w którym mieszkasz i powietrze, którym oddychasz, mogą mieć wpływ na rozwój mózgu, mówi główny autor badań, doktor Travis Beckwith. Chociaż utrata istoty szarej jest tutaj znacząco mniejsza niż w chorobach neurodegeneracyjnych, to może być na tyle duże, że wpłynie na rozwój psychiczny i fizyczny.
      Z przeprowadzonych badań wynika, że utrata istoty szarej w płacie czołowym, płacie ciemieniowym i móżdżku wynosi u takich dzieci 3–4 procent.
      W badaniach, których wyniki opublikowano na łamach PLOS One, wzięło udział 147 dzieci w wieku 12 lat. To część z dzieci, które biorą udział w wieloletnich badaniach o nazwie Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Do badań tych rekrutowano dzieci w wieku poniżej 6 miesięcy, a ich celem jest sprawdzenie wpływu zanieczyszczeń z ruchu samochodowego na rozwój i zdrowie dzieci.
      Do CCAAPS rekrutowane są dzieci, które w pierwszym roku życia były narażone na wysoki lub niski poziom zanieczyszczeń powietrza z ruchu samochodowego. Dzieci podlegają szczegółowym badaniom w wieku 1, 2, 3, 4, 7 i 12 lat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Poziom hormonu stresu, kortyzolu, jest wyższy u kobiet, które rodzą jesienią i zimą, niż u tych, rodzących wiosną i latem. Badania przeprowadzone na Cardiff University mogą wyjaśniać, dlaczego zaburzenia umysłowe częściej dotykają osób urodzonych w zimie.
      Poziom kortyzolu u matki rośnie w czasie ciąży. Nasze badania pokazują, że dzieci urodzone jesienią i zimą są bezpośrednio przed porodem wystawione na działanie wyjątkowo wysokich dawek kortyzolu. U kobiet rodzących jesienią i zimą poziom kortyzolu w ślinie jest średnio o 20% wyższy, niż u rodzących wiosną i latem, mówi profesor Ros John z School of Biosciences na Cardiff University.
      Już wcześniej powiązano wyższy poziom kortyzolu u ciężarnych z wyższym ryzykiem zaburzeń umysłowych u dzieci. Nasze badania mogą więc wyjaśniać, dlaczego u osób urodzonych zimą zaburzenia takie występują częściej. Nie wyjaśniają one jednak, dlaczego u rodzących w okresie jesienno-zimowym występuje wyższy poziom hormonu stresu, dodaje uczony.
      Nauka od dawna wie o sezonowych zmianach zachowania całych populacji. Jednak znacznie mniej wiadomo o sezonowych zmianach zachowania u ciężarnych kobiet. Dlatego też naukowcy z Cardiff wykorzystali długoterminowe dane z badań Grown in Wales, dzięki którym mogli sprawdzić zależność pomiędzy porą roku, koncentracją kortyzolu w ślinie, objawami depresji i niepokoju, wagą urodzeniową dzieci oraz wagą łożysk. Okazało się, że istnieje związek pomiędzy porą roku, a koncentracją kortyzolu w ślinie w chwili porodu. Nie zauważono natomiast związku pomiędzy porą roku a objawami zaburzeń umysłowych u matek, wagą dziecka czy wagą łożyska.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...