Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W RPA odkryto najstarsze dowody istnienia pola magnetycznego Ziemi, tym samym początki jego istnienia cofnięto w czasie o 250 mln lat. W skałach dacytowych z gór otaczających miejscowość Barberton znaleziono bowiem charakterystycznie ułożone niewielkie minerały żelaza.

Ich analiza wykazała, że 3,45 mld lat temu siła pola magnetycznego naszej planety była o wiele mniejsza niż obecnie. Profesor John Tarduno z University of Rochester opowiadał kolegom po fachu o swoich odkryciach na konferencji nt. nauk o Ziemi w Wiedniu. Wg niego, ok. 3,45 mld lat temu miał miejsce krytyczny okres, ponieważ to również wtedy pojawiły się pierwsze formy życia. Być może te dwa zjawiska są ze sobą powiązane.

Amerykanie opracowali metodę badania magnetytów (drobinek minerału zaliczanego do grupy spineli żelazowych), które zostały uwięzione w kryształach skały wulkanicznej. W stygnącej lawie minerały żelaza orientują się w stosunku do pola magnetycznego. Ich pozycja ulega utrwaleniu, kiedy temperatura krzepnących skał spada poniżej 580 stopni Celsjusza.

Tarduno uważa, że choć dzisiaj granica między magnetosferą a wiatrami słonecznymi znajduje się w odległości 10 promieni od centrum Ziemi, kiedyś mogła być zlokalizowana znacznie bliżej, bo w odległości 3-5 promieni. Oznaczałoby to, że w zamierzchłej przeszłości zorze występowały na mniejszych szerokościach geograficznych, gdyż więcej naładowanych cząstek słonecznych (protonów i elektronów) pokonywało pole magnetyczne naszej planety i zderzało się z cząstkami występującymi w atmosferze. Profesor zakłada także, że z atmosfery w szybszym - niż wcześniej zakładano - tempie zniknęła większa ilość lekkich pierwiastków, np. wodoru. Zespół dywaguje, że może to oznaczać, że na wczesnej Ziemi było w takim razie o wiele więcej wody.

W Afryce, Indiach i Australii występują bardzo stare skały wulkaniczne. Ich wiek ocenia się na 3,6 mld lat. Tarduno nimi nie dysponuje, ale pozyskał młodsze skały osadowe, które zawierają minerały erodujące ze starożytnych skał, liczących sobie nawet 4 mld lat. Opracowujemy technologie i wierzymy, że potrafimy naprawdę odtworzyć utrwalone w nich pole magnetyczne.

Share this post


Link to post
Share on other sites

Waldi!

Te drobinki orientują się wg ziemskiego pola magnetycznego, a nie słonecznego. Zaś ziemskie pole magnetyczne zmienia swą biegunowość co kilkaset tysięcy do ponad miliona lat.

Share this post


Link to post
Share on other sites

Przestań myśleć lokalnie zacznij myśleć Galaktycznie.

Skąd się biorą zorze polarne?? Jak galaktyka trzyma wszystko w kupie??

 

Ziemskie pole drga z główną składową między 2 a 3 Hz (składowa 50Hz to pikuś przy wcześniej wymienionej). Każdy wybuch na słońcu jest analizowany na ziemi w zakresie fal 400kHz - 480kHz i innych oknach astronomicznych atmosfery.

Do tego wypiętrzenia górotworu , precesja osi ziemi (2600lat) ciągle zmieniają orientację tych kryształków sprzyjając ich rozmagnesowaniu (przemagnesowaniu) pomijam światło rentgenowskie z rozpadów gama i cząstki kosmiczne .

Stąd twierdzę że to bzdura. 

Ziemskie pole magnetyczne tańczy jak mu galaktyka zagra  :D

Share this post


Link to post
Share on other sites

" Ziemskie pole drga z główną składową między 2 a 3 Hz (składowa 50Hz to pikuś przy wcześniej wymienionej)" - czy mógłbyś wytłumaczyć o co chodzi? Składowa czego? Co to za porównanie "składowych" i co z tego wynika?

Co to są astronomiczne okna atmosfery i skąd akurat wartość 400kHz?

Dlaczego wg Ciebie rozmagnesowanie jest tożsame z przemagnesowaniem?

Dlaczego zmienia się orientacja kryształków i co to ma wspólnego z omawianym w artykule zjawiskiem magnetyzmu?

Przepraszam, że pytam ale moje ponad dwudziestoletnie doświadczenie zawodowe m. in. w dziedzinie pól magnetycznych i materiałów jakoś nie przystaje do tego co napisałeś. Może dowiem się czegoś nowego.

Share this post


Link to post
Share on other sites
Przepraszam, że pytam ale moje ponad dwudziestoletnie doświadczenie zawodowe m. in. w dziedzinie pól magnetycznych i materiałów jakoś nie przystaje do tego co napisałeś. 

Jak przewijasz silniki to się nie dziwię. Wpisuj hasło po haśle do Google i ucz się, a nie oczekuj wykładu.

Share this post


Link to post
Share on other sites

1. Nie przewijam silników.

2. Moja wiedza jest głównie praktyczna - studia skończyłem dawno temu.

3. Dziękuję za odpowiedź, zgodnie z zamierzeniem mojego pytania, wiele się Tobie dowiedziałem.

Share this post


Link to post
Share on other sites
wiele się Tobie dowiedziałem[/size]

... o Tobie

Okna astronomiczne dobrze opisane u Rybki, pola magnetyczne i fale stojące N.cz. na witrynach o smogu EM (stare książki o filtrach do oscyloskopów też sporo mówią), rozmagnesowanie ( kineskopy - regeneracja) , co do galaktyki (rozumiem że masz elektryczne wykształcenie) to warto przemyśleć teorię elektrycznego kosmosu (zwłaszcza elektrostatykę).

zgodnie z zamierzeniem mojego pytania 

::D

Share this post


Link to post
Share on other sites

W artykule wspomniano o orientowaniu się drobinek minerału, a następnie o utrwaleniu się pozycji tych drobinek w stygnącym materiale, więc o co Wy się Panowie przepraszam kłócicie? Mam wrażenie, że przynajmniej jeden z Was zagalopował się z chęcią pochwalenia się swoją wiedzą, przy jednoczesnym złym rozumieniu tekstu. Może jestem w błędzie, ale pozycja drobinek minerału, która ustaliła się w ciele, które osiągnęło stan stały nie ulega zmianie niezależnie od pola magnetycznego(?)

Share this post


Link to post
Share on other sites

Dobrze to rozumiesz. Te drobinki to domeny magnetyczne (ferromagnetyczne), które orientują się zgodnie z kierunkiem pola magnetycznego. Dopóki nie są w jakiś sposób uwięzione to mogą się poruszać ( np w lawie o temperaturze poniżej punktu Curie czyli jak pamiętam ok 317 st C) Potem gdy lawa zastygnie, domeny nie zmieniają już kierunku, bo pole magnetyczne ziemi jest za słabe aby tego dokonać. Wydaje mi się, że kierunek i wartość natężenia pola magnetycznego tych domen jest mierzona. Stąd też chyba wiadomo o przebiegunowaniach Ziemi.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Przed miliardem lat w Drodze Mlecznej powstała gromada gwiazd. Od tego czasu gwiazdy te przebyły cztery wielkie okrążenia wokół brzegów naszej galaktyki. Jej grawitacja spowodowała, że gromada rozciągnęła się w długą gwiezdną rzekę. Teraz rzeka ta przepływa w odległości zaledwie 330 lat świetlnych od Ziemi. Zdaniem astronomów, pomoże ona oszacować masę drogi Mlecznej.
      Astronomowie od dawna obserwowali te gwiazdy otoczone innymi gwiazdami. Dotychczas nie zdawali sobie jednak sprawy, że należą one do jednej grupy. Dopiero dzięki trójwymiarowej mapie tworzonej przez satelitę Gaia zauważono, że gwiazdy poruszają się razem z niemal tą samą prędkością i w tym samym kierunku. Obecnie rzeka ma 1300 lat świetlnych długości i 160 lat świetlnych szerokości.
      Zidentyfikowanie takiego pobliskiego strumienia jest jak natrafienie na igłę w stogu siana. Astronomowie od dawna patrzyli na ten strumień, spoglądali przez niego, a dopiero teraz dowiedzieliśmy się, że on tam jest, jest kolosalny i znajduje się niezwykle blisko Słońca, mówi João Alves z Uniwersytetu Wiedeńskiego, jeden z autorów badań.
      Kosmos jest pełen takich strumieni. Jednak ich badanie nastręcza kłopotów. Trudno jest bowiem odróżnić gwiazdy należące do strumienia od innych gwiazd. Zwykle też takie strumienie znajdują się znacznie dalej od nas. Zauważenie takiej struktury tak blisko bardzo nam się przyda. Tak nieduża odległość oznacza, że gwiazdy nie świecą zbyt słabo, a ich obraz nie jest zbyt zamazany, by nie można było ich badać. To marzenie każdego astronoma, dodaje Alves.
      Specjaliści mają nadzieję, że gdy dokładnie zbadają, w jaki sposób gromada gwiazd zmienia się w strumień, będą mogli określić, w jaki sposób galaktyki zyskują gwiazdy. Nowe znalezisko jest tym cenniejsze, że w tak dużych i masywnych galaktykach jak Droga Mleczna takie gromady są zwykle rozrywane i gwiazdy podążają w różnych kierunkach. Tymczasem znaleziona gwiezdna rzeka jest na tyle wielka i powiązana na tyle mocno, że pozostała nietknięta przez miliard lat, w czasie których okrążała centrum galaktyki. Nie można też wykluczyć, że należy do niej więcej gwiazd, niż wynika to ze wstępnych danych Gai.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      To kolizja, w wyniku której powstał Księżyc, dostarczyła na Ziemię składniki niezbędne do powstania życia, uważają naukowcy z Rice University. Ponad 4,4 miliarda lat temu Ziemia zderzyła się z inną planetą, a skutkiem tej kolizji było powstanie Księżyca. Amerykańscy uczeni twierdzą, że nie był to jej jedyny efekt. Ich zdaniem podczas zderzenia nasza planeta zyskała większość obecnego na niej węgla i azotu.
      Z badań nad prymitywnymi meteorytami wiemy, że Ziemia i inne wewnętrzne planety Układu Słonecznego są ubogie w lotne pierwiastki. Czas i sposób ich pojawienia się na Ziemi jest przedmiotem debaty naukowej. Nasza teoria jest pierwszą, która wyjaśnia, zgodnie ze wszystkimi dowodami geochemicznymi, czas i sposób pojawienia się tych pierwiastków na naszej planecie, mówi współautor badań Rajdeep Dasgupta.
      Prowadzone przez Dasguptę laboratorium specjalizuje się w badaniu reakcji geochemicznych zachodzących w głębi planety w warunkach wysokiej temperatury i ciśnienia. Podczas serii eksperymentów Dasgupta i jego student Damanveer Grewal postanowili przetestować hipotezę, że lotne związki chemiczne trafiły na Ziemię wskutek zderzenia z protoplanetą, której jądro było bogate w siarkę. Zawartość siarki jest tutaj istotna, gdyż dysponujemy licznymi dowodami eksperymentalnymi wskazującymi, że węgiel, siarka i azot są obecne w każdej części Ziemi, z wyjątkiem jej jądra. Jądro nie wchodzi w interakcje z resztą Ziemi, ale wszystko ponad nim, płaszcz, skorupa, hydrosfera i atmosfera są ze sobą połączone i wymieniają się materiałem, mówi Grewal.
      Od dawna istnieje teoria mówiąca, że Ziemia zyskała lotne pierwiastki z bogatych w nie meteorytów, które bombardowały planetę już po uformowaniu się jądra. Co prawda sygnatury izotopowe tych pierwiastków są zgodne z sygnaturami izotopowymi pierwiastków znajdowanych obecnie na prymitywnych meteorytach zwanych chondrytami węglowymi, to stosunek węgla do azotu jest różny. Na Ziemi wynosi on około 40:1, tymczasem w chondrytach węglowych jest to 20:1.
      Podczas swoich eksperymentów, w czasie których symulowano ciśnienie i temperatury podczas formowania się jądra ziemi, Grewal i jego zespół testowali hipotezę, zgodnie z którą mamy bogate w siarkę jądro, ale brakuje w nim azotu i węgla, przez co poza jądrem stosunek tych pierwiastków jest inny niż powinien. Podczas serii testów z uwzględnieniem różnych temperatur i ciśnienia Grewal obliczał, jak dużo węgla i azotu może dostać się do jądra przy trzech różnych scenariuszach: gdy nie ma w nim siarki, gdy jest 10% siarki i gdy siarka stanowi 25% jądra.
      Na azot niemal nie miało to wpływu. Pozostawał on rozpuszczalny w stopach powiązanych z krzemianami. Jedynie przy założeniu najwyższej koncentracji siarki obserwowaliśmy, że rozpoczynało się jego usuwanie z jądra. Węgiel zaś zachowywał się zupełnie inaczej. Znacznie gorzej rozpuszczał się w stopach z obecnością siarki i było go w nich około 10-krotnie mniej pod względem wagowym niż w stopach bez siarki.
      Po uzyskaniu takich wyników naukowcy, znając koncentrację i stosunek pierwiastków zarówno na Ziemi jak i na meteorytach, stworzyli symulację komputerową, której celem było opracowanie najbardziej prawdopodobnego scenariusza, wedle którego mamy na Ziemi takie a nie inny rozkład lotnych pierwiastków. Uzyskanie odpowiedzi wymagało sprawdzenia około miliarda(!) różnych scenariuszy i porównania uzyskanych w każdym z nich wyników z warunkami, jakie obecnie panują w Układzie Słonecznym.
      Okazało się, że wszystkie dostępne dowody – sygnatury izotopów, stosunek węgla do azotu oraz całkowita ilość węgla, azotu i siarki na Ziemi z wyjątkiem jej jądra – wskazują na to, że pierwiastki te trafiły na naszą planetę wskutek kolizji z planetą wielkości Marsa o bogatym w siarkę jądrze, w wyniku której powstał Księżyc, mówi Grewal.
      Nasze badania sugerują, że skaliste podobne do Ziemi planety mają większą szansę na nabycie pierwiastków niezbędnych do powstania życia, jeśli doszło tam do zderzenia z inną planetą zbudowaną z innych pierwiastków, prawdopodobnie pochodzącą z innej części dysku protoplanetarnego, mówi Dasgupta, który jest też głównym badaczem w finansowanym przez NASA programie CLEVER Planets. Celem tego programu jest badanie, jak niezbędne do życia pierwiastki mogły trafić na Ziemię i inne skaliste planety.
      Zdaniem Dasgupty jest mało prawdopodobne, by Ziemia zyskała wspomniane pierwiastki samodzielnie, w czasie swojego formowania się. To zaś oznacza, że możemy rozszerzyć obszar poszukiwań sposobu, w jaki pierwiastki lotne trafiają na jedną planetę i tworzą życie w znanej nam formie, dodaje Dasgupta.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ziemskie północne pole magnetyczne przemieszcza się z Kanady w stronę Syberii. Ruch ten jest tak szybki, że pojawiła się konieczność dokonana rzadkiej korekty Ziemskiego Modelu Magnetycznego. Opisuje on pole magnetyczne planety i jest podstawą wszystkich współczesnych systemów nawigacyjnych.
      Najnowsza wersja modelu pochodzi z roku 2015 i miała być używana do 2020 roku. Jednak zmiany pola magnetycznego są tak duże, że już teraz pojawiła się konieczność korekty modelu. Błąd cały czas się powiększa, mówi Arnaud Chulliat z National Centers for Environmental Information w amerykańskiej Narodowej Administracji Oceanicznej i Atmosferycznej.
      Problem leży częściowo w przemieszczającym się polu magnetycznym, a częściowo w innych zmianach zachodzących we wnętrzu Ziemi. Na przykład w 2016 roku głęboko pod północną częścią Ameryki Południowej i wschodnim Pacyfikiem część pola magnetycznego czasowo przyspieszyła. W roku 2018, gdy specjaliści z NOAA i British Geological Survey dokonali corocznego sprawdzenia, na ile aktualny model odpowiada rzeczywistym zmianom pola magnetycznego Ziemi okazało się, że jest on na granicy przekroczenia akceptowalnego marginesu błędów nawigacyjnych.
      Naukowcy zaczęli zastanawiać się, co takiego się stało. Okazało się, że nałożyły się dwa zjawiska. Po pierwsze impuls geomagnetyczny z 2016 roku przydarzył się zaraz po aktualizacji modelu, więc pole magnetyczne zaczęło zmieniać się gdy tylko przyjęto nowy model, a zmiany poszły w kierunku, którego nie przewidziano. Po drugie sytuację pogorszyła zmiana położenia północnego bieguna magnetycznego, który przemieszcza się w sposób nieprzewidywalny. Na przykład w połowie ubiegłego wieku przyspieszył on swoją wędrówkę z około 15 kilometrów na rok do około 55 km/rok. Do roku 2001 znalazł się na Oceanie Arktycznym, w 2018 roku przeciął linię zmiany daty, a obecnie podąża w kierunku Syberii. Fakt, że biegun magnetyczny przemieszcza się tak szybko, czyni cały ten region bardziej podatnym na duże błędy, mówi Chulliat.
      Naukowcy próbują zrozumieć, dlaczego pole magnetyczne Ziemi zmienia się tak szybko. Impulsy podobne do tego z 2016 roku mogą mieć swoje źródło w „hydromagentycznych” falach z głębi jądra. Z kolei szybkie przemieszczanie się bieguna magnetycznego może być spowodowane przez strumienie płynnego żelaza przemieszczające się szybko pod Kanadą. Wydaje się, że położenie północnego bieguna magnetycznego zależy od dwóch dużych obszarów w jądrze Ziemi, jednego pod Kanadą i jednego pod Syberią. Obszar pod Syberią wygrywa obecnie w to swoiste przeciąganie liny, stwierdził Phil Livermore z University of Leeds.
      Zmiana modelu magnetycznego planety miała nastąpić już 15 stycznia, jednak w związku z tzw. zamknięciem rządu USA przesunięto ją na 30 stycznia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wedle nowego modelu powstania Księżyca, Srebrny Glob uformował się wewnątrz Ziemi, gdy była ona obiektem synestialnym. Model, stworzony przez naukowców z Uniwersytetu Kalifornijskiego w Davis i Uniwersytetu Harvarda pozwala na rozwiązanie licznych problemów dotyczących Księżyca.
      Ta nowa praca wyjaśnia cechy Księżyca, które trudno jest wyjaśnić za pomocą modeli obecnie obowiązujących, mówi profesor Sarah Stewart z Uniwersytetu Kalifornijskiego w Davis. Z chemicznego punktu widzenia Księżyc i Ziemia są niemal identyczne, ale istnieją między nimi pewne różnice. To pierwszy model, który wyjaśnia te różnice.
      Obecnie uważa się, że Księżyc powstał wskutek zderzenia Ziemi z obiektem wielkości Marsa, nazwanym Theią. Wskutek zderzenia na orbicie Ziemi pojawił się materiał, z którego z czasem uformował się Księżyc.
      Wedle nowej teorii Księżyc powstał wewnątrz obiektu synestialnego. Idea obiektu synestialnego została zaproponowana w ubiegłym roku przez Simona J. Locka i Sarah Stewart. Zgodnie z nią gdy dochodzi do kolizji pomiędzy obiektami wielkości planet pojawia się szybko obracająca się masa stopionych i odparowanych skał. Masa taka przyjmuje kształt pączka. Obiekty tego typu nie istnieją długo, jedynie kilkaset lat. Szybko się kurczą wypromieniowując ciepło, a skały w formie gazowej kondensują się do formy ciekłej, w końcu formując planetę. Nowy model przewiduje, że po kolizji Ziemi i Thei pojawił się obiekt synestialny, odparowana Ziemia, wewnątrz której, w temperaturze pomiędzy 2200 a 3300 stopni Celsjusza i przy ciśnieniu dziesiątek atmosfer, powstał Księżyc.
      Jedną z zalet takiego wyjaśnienia jest fakt, że obiekt synestialny może pojawić się wskutek różnych scenariuszy. Nie jest konieczne, by doszło do zderzenia w określony sposób z obiektem o określonej masie. Gdy Ziemia uformowała obiekt synestialny, część skał znalazła się na jego orbicie, dając początek Księżycowi. Materiał kondensował się na tych skałach, a w międzyczasie Ziemia kurczyła się, powracając do formy planety skalistej. Przez to Księżyc odziedziczył wiele ze składu Ziemi, ale jako że uformował się wysokich temperaturach, utracił niektóre z pierwiastków, co wyjaśnia różnice w składzie obu ciał niebieskich.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Stanforda są pierwszymi, którzy uzyskali system składający się z „zaprojektowanych elektronów“. Pozwala to na dobranie właściwości elektronów, a w przyszłości umożliwi stworzenie nowych typów materiałów.
      Sercem wszystkich dzisiejszych technologii jest zachowanie się elektronów w materiale. Teraz jesteśmy w stanie dobrać podstawowe właściwości elektronów tak, by zachowywały się one w sposób rzadko spotykany w zwykłych materiałach - mówi profesor Hari Manoharan.
      Pierwszym stworzonym w ten sposób materiałem jest struktura w kształcie plastra miodu, zainspirowana grafenem. Naukowcy nazwali ją „molekularnym grafenem“.
      Uczeni za pomocą skaningowego mikroskopu elektronowego umieszczali pojedyncze molekuły tlenku węgla na idealnie gładkiej powierzchni miedzi. Węgiel odpychał wolne elektrony z atomów miedzi i zmuszał je do utworzenia heksagonalnej struktury, w której miały właściwości podobne do elektronów w grafenie, czyli zachowywały się tak, jakby nie miały masy. Aby odpowiednio dobrać ich właściwości uczeni przesuwali molekuły CO, co zmieniało symetrie przepływu elektronów. W pewnych ustawieniach zachowywały się one tak, jakby były wystawione na działanie pola elektrycznego bądź magnetycznego. Inne ułożenie molekuł umożliwiało np. na precyzyjne dobranie gęstości elektronów na powierzchni. Możliwe było też wyznaczenie obszarów, na których elektrony zachowywały się tak, jakby posiadały masę. Jedną z najbardziej niesamowitych rzeczy, którą osiągnęliśmy jest spowodowanie, by elektrony zachowywały się tak, jakby znajdowały się w silnym polu magnetycznym, podczas gdy w rzeczywistości nie ma żadnego pola - stwierdza Manoharan. Dzięki teorii opracowanej przez współautora badań, którym jest Francisco Guinea z Hiszpanii, naukowcy byli w stanie obliczyć, jak ułożyć atomy węgla, by elektrony zachowywały się jak zostały poddane polu magnetycznemu do 60 tesli.
      To nowe pole do badań dla fizyki. Grafen molekularny to pierwsza z wielu możliwych struktur. Sądzimy, że nasze badania pozwolą na stworzenie nowych przydatnych w elektronice materiałów - mówi Manoharan.
×
×
  • Create New...