Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Starożytny ołów pomoże łapać neutrina
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Międzynarodowy zespół naukowców pracujący w ramach znajdującego się w Japonii eksperymentu T2K zaobserwował sygnały, które mogą być przełomem w dziedzinie badań neutrino i symetrii pomiędzy materią a antymaterią. Zauważone sygnały sugerują, że neutrino może oscylować pomiędzy swoimi trzema rodzajami. Na razie nie udało się potwierdzić tych obserwacji, gdyż T2K wyłączono po trzęsieniu ziemi z marca bieżącego roku.
W ubiegłym roku informowaliśmy, że eksperyment OPERA zanotował zmianę neutrina mionowego w taonowe. Teraz wszystko wskazuje na to, że neutrino mionowe może zamieniać się w neutrino elektronowe.
Jeśli spostrzeżenia się potwierdzą, otworzy to drogę do nowych badań i koncepcji w fizyce cząstek i budowie wszechświata. Pojawią się nowe pomysły, których celem będzie rozwiązanie problemu widocznej we wszechświecie asymetrii pomiędzy materią a antymaterią. Chcemy poradzić sobie z tym problemem, ale najpierw musimy potwierdzić, że różne zapachy neutrino mogą spontanicznie między sobą oscylować. Jak dotąd nasze eksperymenty przynoszą pozytywne rezultaty - mówi profesor Dave Wark z Impterial College London, który przewodzi brytyjskiemu zespołowi pracującemu w T2K.
Eksperyment T2K wykorzystuje niezwykły wykrywacz neutrin Super-Kamiokande. Jest on ukryty na głębokości 1000 metrów pod górą Kamioka w pobliżu miasta Hida. W jego skład wchodzi olbrzymi stalowy zbiornik o średnicy 39,3 metra i wysokości 41,4 m, który mieści 50 000 ton niezwykle czystej wody. Wewnątrz zbiornika znajdują się tysiące czujników.
Podczas badań T2K naukowcy używali akceleratora Japan Proton Accelerator Research Centre (J-Parc), który pod ziemią wystrzeliwał strumień neutrino mionowych w kierunku znajdującego się 295 kilometrów dalej Super-Kamiokande. Czujniki Super-K rejestrowały rzadkie i słabe rozbłyski światła, powstające w wyniku interakcji neutrin z cząsteczkami wody.
Przed trzęsieniem ziemi, które zniszczyło laboratorium T2K, uczeni obserwowali pojawienie się neutrin elektronowych w Super-K. Wydaje się zatem, że neutrina mionowe emitowane przez J-Parc zmieniły się w neutrina elektronowe. Na razie jednak danych jest zbyt mało, by jednoznacznie ogłosić, że doszło do oscylacji. Laboratorium będzie nieczynne do stycznia przyszłego roku. Na potwierdzenie oscylacji neutrin mionowych w elektronowe będziemy musieli poczekać co najmniej rok.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wszechświat jest pełen neutrin. Jest ich tak dużo, że w każdej sekundzie przez nasze ciała przelatuje nawet 100 bilionów tych cząstek subatomowych. Mimo tej obfitości neutrino jest najsłabiej poznaną cząstką elementarną. Bardzo słabo oddziałuje ono z materią, dlatego też trudno jest je zarejestrować i badać. Tymczasem fizycy od kilkunastu lat coraz bardziej interesują się neutrinami, gdyż mogą one wyjaśnić wiele tajemnic, na przykład, dlaczego we wszechświecie jest więcej materii niż antymaterii.
Jedną z pierwszych cech neutrin, jakie powinniśmy poznać, są ich rozmiary. Znajomość tego parametru pozwoli na zaprojektowanie bardziej precyzyjnych detektorów, dzięki którym można będzie lepiej zbadać neutrina. Międzynarodowy zespół naukowy opisał na łamach Nature opracowaną przez siebie metodę pomiaru rozmiarów neutrino elektronowego oraz uzyskane wyniki.
Uczeni przeprowadzili eksperyment, podczas którego obserwowali radioaktywny rozpad berylu (7Be). Rozpada się on do litu (7Li). Podczas tego procesu ma miejsce wychwyt elektronu, kiedy to elektron atomu jest przechwytywany przez proton z jego jądra. Powstaje w ten sposób neutron pozostający w jądrze nowego pierwiastka – litu-7 – oraz emitowane jest neutrino elektronowe.
Uwalniana jest energia, która odrzuca nowo powstały atom litu-7 w jednym kierunku, a neutrino w przeciwnym. Badacze obserwowali ten proces w akceleratorze, w którym umieścili bardzo czułe detektory neutrin. Dzięki temu mogli zbadać moment pędu atomu litu i na tej podstawie obliczyć rozmiary neutrino.
Pomiar oddaje kwantową naturę neutrino. Co oznacza, że „rozmiar” należy tutaj rozumieć jako pewien stopień niepewności co do przestrzeni zajmowanej przez neutrino. Z obliczeń wynika, że dolną granicą rozmiarów pakietu falowego neutrino elektronowego jest 6,2 pikometrów. To oznacza, że pakiet falowy neutrin jest znacznie większy niż pakiet falowy typowego jądra atomowego, który liczy się w femtometrach. Dla jądra wodoru jest to ok. 1,2 fm, dla jądra węgla, ok 3,5 fm.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jedną z metod służących poznaniu naszej historii jest badanie zanieczyszczeń powodowanych przez człowieka. W przeszłości informowaliśmy, że historia starożytnego Rzymu została zapisana w zanieczyszczeniach na Grenlandii, a później informowaliśmy, że Rzymianie zanieczyszczali atmosferę bardziej, niż sądziliśmy. Teraz zaś geolodzy z Uniwersytetu w Heidelbergu znaleźli najstarsze dowody na zanieczyszczenie przez człowieka środowiska ołowiem.
Rdzenie z osadów z dna morskiego oraz okolic wybrzeży Morza Egejskiego dostarczyły dowodów, że ludzie zanieczyścili okolicę ołowiem już 5200 lat temu. Odkrycie to, w połączeniu z analizą pyłków roślin zawartych w osadach, daje lepszy wgląd w zmiany społeczno-ekonomiczne regionu Morza Egejskiego. Widać w nich też wydarzenia polityczne, jak na przykład podbój Grecji przez Rzym.
W badanym regionie powstały jedne z najstarszych europejskich centrów kulturowych. Wpływ społeczności rolniczo-pasterskich na środowisko widać w wylesianiu oraz zmianie składu pyłków roślin, znajdujących się w osadach. Widzimy, że około 5200 lat temu na południu Europy dochodzi do intensyfikacji takich zmian. Wciąż jednak społeczności te miały jedynie lokalny wpływ na środowisko.
Na Półwyspie Bałkańskim metale wytapiano około 7000 lat temu, natomiast technologię kupelacji rud ołowiu w celu pozyskania srebra stosowano w regionie Morza Egejskiego i Bliskiego Wschodu być może już około 6000 lat temu. Technologie te pozostawiły po sobie trwały ślad w środowisku. Dotychczas najstarsze dowody na antropogeniczne zanieczyszczenie ołowiem pochodziły sprzed około 4000 lat. Uczeni z Heidelbergu znaleźli w rdzeniu pobranym z torfowiska w pobliżu Filippii (Tenaghi Philippon) ślady antropogenicznego zanieczyszczenia ołowiem sprzed 5200 lat. Wciąż jednak były to zmiany regionalne.
Pierwsze ponadregionalne zanieczyszczenie ołowiem miało miejsce na przełomie III i II wieku naszej ery. Ślady rzymskich zanieczyszczeń znaleziono w lodach Grenlandii. Pochodzą one mniej więcej z czasu podboju Grecji przez Rzym. Kolejny skok zanieczyszczeń miał miejsce około 200 lat później, gdy Imperium Romanum przeżywało okres największego rozkwitu. Wysoki poziom antropogenicznych zanieczyszczeń ołowiem utrzymywał się przez około 1000 lat. Poza wspomnianym skokiem w I wieku, do zwiększenia zanieczyszczeń doszło też około 1700 i 1200 lat temu.
Widoczne są też wyraźne spadki, które przypadają na okres władzy dynastii Antoninów (165–180) oraz cesarza bizantyńskiego Justyniana (541–549). W obu tych okresach doszło do dużych epidemii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.