Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'tlenek żelaza' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Dotąd wykrycie pojedynczej komórki nowotworowej odrywającej się od guza wydawało się graniczyć z cudem, lecz dzięki wielofunkcyjnym nanocząstkom, które usuwają z tła szum, obrazowanie może się stać naprawdę bardzo czułe. Nanocząstki stanowią bardzo obiecujący środek kontrastowy, ale we wszystkich technikach niewykorzystujących radioaktywnych znaczników otaczające tkanki przytłaczają słaby sygnał, przez co naukowcom nie udaje się wykryć pojedynczej komórki bądź niewielkiej ich liczby. Eksperymenty na syntetycznej tkance zademonstrowały, że technika może niemal całkowicie wyeliminować silny sygnał tła. Podczas przyszłych badań akademicy spróbują powtórzyć wyniki w badaniach na zwierzętach. Trzydziestonanometrowa cząstka składa się z jądra z tlenku żelaza oraz cienkiej złotej skorupki, która otacza jądro, ale się z nim nie styka. Otoczka absorbuje promieniowanie podczerwone, ale można ją także wykorzystać w termoterapii czy do mocowania biocząstki, która powinna się związać z konkretnymi komórkami. W ramach wcześniejszych badań zespół Gao połączył różne funkcje w jednej nanocząstce, co nie jest łatwe ze względu na jej miniaturowe rozmiary. Jak tłumaczy współautor najnowszego studium prof. Matthew O'Donnell, przyszłe metody obrazowania będą służyć nie tyle do wykrywania guzów, monitorowania funkcji czy zużycia tlenu, lecz do badania poziomu molekularnego. Oznacza to, że oceny medycznej i zliczania komórek będzie można dokonać wewnątrz organizmu. Biopsję lub badanie pod mikroskopem zastąpi zdjęcie wskazujące konkretne białka albo nieprawidłową aktywność u źródła. Dzisiaj używamy biomarkerów, by zobaczyć duży zbiór chorych komórek, nowa technika może nas jednak sprowadzić na bardzo precyzyjny poziom, potencjalnie pojedynczej komórki. Amerykanie przetestowali swoją metodę w obrazowaniu fotoakustycznym. To tania technika, w dodatku czuła na niewielkie zmiany we właściwościach tkanki i zdolna do penetrowania na kilka centymetrów w głąb. Działa na zasadzie lekkiego podgrzania komórek za pomocą lasera. Te zaczynają wibrować i wytwarzają fale ultradźwiękowe, które przemieszczają się przez tkanki ku powierzchni ciała. Zespół twierdzi, że metodę z nanocząstkami z magnetycznym jądrem da się zastosować także w innych rodzajach obrazowania.
  2. Naukowcy z Purdue University stworzyli magnetyczny ferropapier, który może zostać wykorzystany np. do budowy miniaturowych silników dla narzędzi chirurgicznych, niewielkich nożyczek do cięcia komórek czy niezwykle małych głośników. Materiał otrzymano dzięki zaimpregnowaniu zwykłego papieru - w tej roli można użyć nawet papieru gazetowego - w mieszaninie oleju mineralnego i magnetycznych nanocząstek z tlenku żelaza. Tak zaimpregnowany papier może być poruszany za pomocą pola magnetycznego. Następnie pokrywa się go warstwą biokompatybilnego tworzywa sztucznego. Chroni ono papier przed wilgocią, a impregnat przed wyparowaniem. Ponadto zwiększa wytrzymałość, elastyczność i sztywność papieru. Papier jest porowaty, a więc można na nim umieścić wiele nanocząstek. Jest jednocześnie miękki, a zatem nie uszkodzi komórek czy tkanek, przyda się więc do przeprowadzania mało inwazyjnych zabiegów. Ponadto jest tani. Jak zapewnia twórca ferropapieru, profesor Babak Ziaie, jego produkcja nie wymaga dostępu do specjalistycznego laboratorium, więc można go wykorzystywać w szkołach i na uczelniach podczas zajęć z robotyki czy mechaniki. Co więcej, do produkcji ferropapieru szczególnie dobrze nadają się najtańsze gatunki papieru, jak np. gazetowy, gdyż charakteryzują się one dużą porowatością. Szczegóły produkcji oraz właściwości ferropapieru zostaną omówione podczas 23. międzynarodowej konferencji IEEE na temat systemów mikroelektromechanicznych, która odbędzie się w Hongkongu pod koniec bieżącego miesiąca.
  3. Mikromagnesy wytwarzane przez bakterie mogą być wykorzystywane do niszczenia guzów nowotworowych. Zespołowi naukowców z Uniwersytetu w Edynburgu, którego pracom przewodniczyła dr Sarah Staniland, udało się ostatnio zwiększyć ich moc. Nanomagnesy bakteryjne są lepsze od produkowanych przez człowieka, ponieważ mają zunifikowane kształty i rozmiary (Nature Nanotechnology). Na czym miałoby polegać ich niszczycielskie działanie? Najpierw należałoby je wprowadzić w wyznaczone miejsce, a następnie aktywować. Naprowadzanie miałoby charakter magnetyczny; zmiana zwrotu pola magnetycznego prowadziłaby do wytworzenia ciepła i unieszkodliwienia komórek nowotworowych. Badacze wspominają też o innym scenariuszu: dostarczaniu leków bezpośrednio do nowotworowych tkanek. Bakterie wychwytują żelazo z otoczenia i przekształcają je w rodziny minerałów magnetycznych. Są one zbudowane z tlenku żelaza (magnetyt) lub siarczku żelaza (pirotyn czy greigit) i wyglądają jak miniaturowe struny korali. Mikroorganizmy posługują się nimi jak igłą kompasu, orientując się dzięki temu w środowisku i odnajdując okolice bogate w tlen. By odkryte zjawisko dało się jakoś wykorzystać w medycynie, konieczne było zwiększenie mocy magnesów. Dlatego też Szkoci hodowali bakterie w środowisku bogatszym w kobalt niż w żelazo. Dodatek tego pierwiastka w magnesach zwiększył ich siłę o 36-45%, co oznacza, że grudki pozostawały dłużej namagnesowane po usunięciu z pola magnetycznego.
×
×
  • Dodaj nową pozycję...