Znajdź zawartość
Wyświetlanie wyników dla tagów 'superhydrofobowy' .
Znaleziono 1 wynik
-
Specjaliści z GE opracowali technologię, dzięki której metale zyskują właściwości superhydrofobowe. Oznacza to, że woda nie rozlewa się po powierzchni metalu i nie przywiera do niego, ale tworzy krople. Przed dwoma laty inżynierowie GE pokazali, że po potraktowaniu odpowiednimi chemikaliami Lexanu, tworzywa sztucznego używanego np. do produkcji CD czy lamp w samochodach, woda do niego nie przylega. Od tamtej pory powstało sporo materiałów odznaczających się superhydrofobowymi właściwościami, jednak były to przede wszystkim tworzywa sztuczne. Teraz po raz pierwszy wykazano, że woda może nie przywierać do metali. Nowa technika może mieć bardzo szerokie zastosowanie. Niejednokrotnie dochodziło do katastrof lotniczych spowodowanych osadzaniem się lodu na silnikach. Używane w czasie lotu instalacje odmrażania wymagają sporo mocy, a pozbywanie się lodu na lotnisku jest pracochłonne i wymaga zastosowania toksycznych chemikaliów. Stworzenie silników, na których nie osadzałby się lód rozwiąże problem. Kolejnym obszarem, w którym można zastosować technikę GE są turbiny gazowe. Jeśli będzie się na nich osadzało mniej wody, to wzrośnie ich wydajność, a jednocześnie spadnie liczba przestojów koniecznych do przeprowadzenie konserwacji. GE nie chce ujawniać szczegółów swojej technologii. Wiadomo jedynie, że ma ona coś wspólnego z liśćmi lotosu, które pokryte są mikroskopijną krystaliczną strukturą wosku, dzięki której osadzająca się na nich woda pozostaje w formie niemal idealnych kul. Eksperci zdradzają jedynie, że testują dwa różne podejścia. Pierwsze zakłada stworzenie odpowiedniej mikrotekstury na powierzchni metalu i pokrycie jej środkami chemicznymi odpychającymi wodę. Drugie pozostawia metal nietkniętym, a mikrotekstura tworzona jest na samym chemicznym pokryciu. Technika jest niezależna od rodzaju metalu. Oba wspomniane podejścia mają zalety. Pierwszego, czyli tworzenia tekstury w samym metalu, można użyć tam, gdzie metal poddany jest większym obciążeniom, które doprowadzą do szybkiego ścierania się warstwy chemikaliów. Wówczas wystarczy po prostu nałożyć kolejną warstwę i nie trzeba już z nią nic robić. Z kolei drugą technikę można będzie zastosować tam, gdzie nakładanie warstwy chemikaliów i tworzenie na niej mikrostruktury jest łatwiejsze i tańsze, niż robienie tego w metalu.