Znajdź zawartość
Wyświetlanie wyników dla tagów 'stellarator' .
Znaleziono 3 wyniki
-
Stellaratory, skomplikowane urządzenia do wytwarzania plazmy i przeprowadzania kontrolowanej reakcji termojądrowej, zawsze pozostawały w cieniu tokamaków. W stellaratorze plazma uzyskiwana jest w komorze o złożonym kształcie, przypominającym kilkukrotnie skręconą wstęgę Mobiusa, a potrzebne do pracy cewki muszą mieć najróżniejsze kształty dostosowane do kształtu komory. To czyni stellaratory bardzo złożonymi urządzeniami, ale ich olbrzymią zaletą jest fakt, że – inaczej niż w tokamakach – plazma stabilizuje się sama. Trudności w wyprodukowaniu odpowiednich cewek magnetycznych oraz utrata temperatury spowodowana złożonym kształtem komory stellaratora powodowały, że więcej słyszeliśmy i pisaliśmy o tokamakach. Jednak to się może zmienić. Naukowcy z niemieckiego Instytutu Fizyki Plazmy im. Maxa Plancka (IPP) we współpracy z naukowcami z amerykańskiego Princeton Plasma Physics Laboratory (PPPL) wykazali właśnie, że w największym na świecie i najnowocześniejszym stellaratorze Wendelstein 7-X (W7-X) w niemieckim Greifswald uzyskano temperaturę dwukrotnie wyższą niż temperatura jądra Słońca. Udało się to dzięki instrumentowi diagnostycznemu XICS, który jest wspólnym dziełem Novimira Pablanta z PPPL i Andreasa Langenberga z IPP. Instrument ten wykazał, że udało się znacznie zmniejszyć utratę ciepła w stellaratorze. Dotychczas klasyczne stellaratory traciły go znacznie więcej niż tokamaki. Słabą stroną stellaratorów jest wchodzenie cząstek w tryb transportu neoklasycznego, który przejawia się m.in. wypchnięciem zanieczyszczeń do centrum plazmy i jej szybkim wychłodzeniem [...]. W urządzeniach typu stellarator neoklasyczne uwięzienie cząstek jest dużo większe niż w tokamakach. [...] Do zalet tokamaka można przede wszystkim zaliczyć jego prostą budowę (geometrię) oraz zdecydowanie niższy transport neoklasyczny niż w stellaratorze, stwierdza Natalia Wendler w rozprawie doktorskiej pt. Badania plazmy przy użyciu systemu diagnostycznego PHA na stellaratorze Wendelstein 7-X. W najnowszym raporcie opublikowanym na łamach Nature eksperci informują, że udało im się zmniejszyć transport neoklasyczny za pomocą odpowiednio ukształtowanych magnesów. To olbrzymi sukces, który daje nadzieję, że w końcu uda się opanować fuzję jądrową. Reakcja termojądrowa (fuzja jądrowa) to zjawisko polegające na łączeniu się lżejszych jąder w jedno cięższe. W jej wyniku powstaje duża ilość energii. Gdyby udało się ją opanować, mielibyśmy do dyspozycji praktycznie niewyczerpane źródło taniej i bezpiecznej energii. Fuzja ma więc wiele zalet w porównaniu z reakcją rozszczepienia jąder cięższych atomów na lżejsze, którą wykorzystujemy w elektrowniach atomowych. Problem w tym, że wciąż nie potrafimy opanować reakcji termojądrowej i uzyskać z niej nadmiarowej energii, gotowej do komercyjnego wykorzystania Stellarator to jedno z pierwszych urządzeń fuzyjnych. Wymyślił je w latach 50. XX wieku fizyk Lyman Spitzer, późniejszy założyciel Princeton Plasma Physics Laboratory. Swoją drogą Spitzer był też pomysłodawcą budowy teleskopów kosmicznych. Jak już wspomnieliśmy, stellaratory bardziej tracą ciepło niż tokamaki, ale mają też liczne zalety. Swoją przewagę opierają na możliwości pracy ciągłej, niemalże braku niestabilności typu MHD oraz gwałtownych wygaśnięć reakcji związanych z przekraczaniem limitu Greenwalda, którego się nie obserwuje w tej konstrukcji. To wszystko sprawia, że stellaratory mogłyby być o wiele bardziej atrakcyjne dla przyszłej elektrowni termojądrowej, gdyby udało się tylko poprawić neoklasyczne utrzymanie naładowanych cząstek. Mimo to przez ostatnie 60 lat zdecydowanie większy nacisk był kierowany na badanie tokamaków, co zaowocowało znaczącym postępem w tej dziedzinie, czytamy w pracy Natalii Wendler. Teraz w uruchomionym przed kilkoma laty stellaratorze W7-X udało się wykazać, że urządzenia te nie muszą tracić tak dużo ciepła. Badania przeprowadzone za pomocą instrumentu XICS wykazały bowiem, że osiągnięto tam tak wysoką temperaturę jonów, że nie byłoby to możliwe bez znacznej redukcji transportu neoklasycznego. Pomiary potwierdzono za pomocą nieco mniej dokładnego narzędzia CXRS. Wyniki tych badań wskazują, że stellaratory oparte na architekturze W7-X mogą być kluczowymi reaktorami, za pomocą których uda nam się opanować fuzję jądrową. Jednak redukcja transportu neoklasycznego nie jest jedynym problemem, z którym musimy się zmierzyć. Jest jeszcze cały szereg zagadnień, w tym poradzenie sobie z pracą ciągłą i zmniejszenie transportu turbulentnego, mówi Pablant. Transport turbulentny powoduje wiry i fale przechodzące przez plazmę, które są drugą najważniejszą przyczyną utraty ciepła. W przyszłym roku W7-X znowu ruszy pełną parą. W stellaratorze przez ostatnie trzy lata montowano nowy system chłodzenia, który umożliwi dłuższą pracę. « powrót do artykułu
-
- stellarator
- tokamak
-
(i 3 więcej)
Oznaczone tagami:
-
W lutym bieżącego roku informowaliśmy o uruchomieniu urządzenia do rozwoju fuzji jądrowej zwanego stellaratorem, w którego powstaniu swój udział ma Polska. Zadaniem Wendelsteina 7-X (W7-X), bo tak nazwano stellarator, nie jest wyprodukowanie nadmiarowej energii, a powolne zwiększanie temperatury plazmy oraz utrzymanie stabilnej plazmy przez 30 minut. Jeśli uda się to osiągnąć do 2025 roku, to będzie dobrze. Jeśli wcześniej, to jeszcze lepiej - mówił wówczas Robert Wolf, jeden z naukowców zatrudnionych przy projekcie. Dotychczas nie wiadomo było jednak, czy stellarator działa, jak należy. Teraz amerykańsko-niemiecki zespół naukowy potwierdził, że w W7-X powstają bardzo silne trójwymiarowe pola magnetyczne, które z 'niezwykłą dokładnością' spełniają założenia projektowe urządzenia. Odstępstwo od teoretycznych założeń jest mniejsze niż 1:100 000. Z tego co wiemy, nikt wcześniej nie osiągnął takiej dokładności zarówno pod względem inżynieryjnym, jak i pod względem pomiaru topologii pola magnetycznego - stwierdzili naukowcy. Uzyskanie doskonałego pola magnetyczne to kluczowy element fuzji jądrowej, gdyż pole magnetyczne jako jedyne jest w stanie utrzymać stabilną plazmę wystarczająco długo, by zaszła w niej fuzja. Naukowcy pracują nad technologią fuzji jądrowej od 60 lat i wciąż jesteśmy bardzo daleko od osiągnięcia celu, jakim jest zapewnienie stałej kontrolowanej produkcji energii za pomocą tego typu reakcji. Zadanie nie jest jednak łatwe. By tego dokonać trzeba wybudować urządzenie zdolne do uzyskania i kontrolowania plazmy o temperaturze 100 milionów stopni Celsjusza. W7-X to jeden z pomysłów na osiągnięcie tego celu. W przeciwieństwie do tokamaków, w których plazma utrzymywana jest w dwuwymiarowym polu elektrycznym, stellarator generuje trójwymiarowe zakręcone pola magnetyczne. To, przynajmniej teoretycznie, powinno dawać przewagę stellaratorowi, gdyż w ten sposób można kontrolować plazmę bez potrzeby dostarczania do urządzenia prądu elektrycznego, co powinno czynić stellarator bardziej stabilnym. Potwierdziliśmy, że stworzona przez nas magnetyczna klatka działa zgodnie z projektem - mówi Sam Lazerson z Princeton Plasma Physics Laboratory. Zadeniem W7-X nie jest uzyskanie energii z fuzji. To instalacja koncepcyjna, która ma dowieść, że same założenia stellaratora są prawidłowe i całość powinna działać. W 2019 roku obecnie wykorzystywany w stellaratorze wodór zostanie zastąpiony deuterem. Mimo to urządzenie nie wyprodukuje więcej energii niż trzeba mu dostarczać. « powrót do artykułu
- 2 odpowiedzi
-
- stellarator
- fuzja jądrowa
-
(i 1 więcej)
Oznaczone tagami:
-
Ruszył stellarator, w który zainwestowała Polska
KopalniaWiedzy.pl dodał temat w dziale Astronomia i fizyka
Niemieccy naukowcy uruchomili właśnie eksperyment, który ma pomóc w rozwoju fuzji jądrowej. Po dziewięciu latach przygotowań specjaliści z Instytutu Fizyki Plazmy im. Maxa Plancka w Greifswald wstrzyknęli niewielką ilość wodoru w urządzenie o kształcie torusa i całość potraktowali mikrofalami. Powstała plazma, która co prawda istniała przez ułamek sekundy, ale było to wystarczająco długo, by potwierdzić udany początek eksperymentu. Dzisiaj wszystko poszło świetnie. Gdy ma się do czynienia z tak skomplikowanym systemem, trzeba upewnić się, że wszystko działa perfekcyjnie. Zawsze istnieje ryzyko niepowodzenia - mówi Robert Wolf, jeden z naukowców zaangażowanych w prace przy projekcie. Uczony mówi, że jednym z poważnych wyzwań było opracowanie systemu chłodzenia magnesów koniecznych do utrzymania plazmy na miejscu. Niemieccy naukowcy szczegółowo przyglądali się więc uruchamianiu Wielkiego Zderzacza Hadronów, by nie popełnić tym samych błędów. Urządzenie w Greifswald to stellarator, którego koncepcję opracował w 1950 roku Amerykanin Lyman Spitzer. Ma on podobny kształt do tokamaka, ale korzysta z systemu magnesów, a nie z pola elektrycznego do utrzymania plazmy w miejscu. Thomas Klinger, szef projektu, mówi, że stellarator powinien utrzymywać plazmę znacznie dłużej tokamak. Procesy zachodzące w stellaratorze są bardziej spokojne. Urządzenie to jest znacznie trudniej zbudować niż tokamak, ale jest łatwiejsze w obsłudze, stwierdza. Urządzenie znane jako Wendelstein 7-X (W7-X) zostało próbnie uruchomione w grudniu. Wówczas jednak użyto helu, który jest znacznie łatwiej podgrzać niż wodór. Ponadto hel ma tę zaletę, że usuwa najmniejsze nawet zanieczyszczenia powstałe podczas budowy. Zadaniem W7-X nie jest wyprodukowanie nadmiarowej energii. Niemieccy naukowcy chcą w nim powoli zwiększać temperaturę plazmy oraz utrzymać stabilną plazmę przez 30 minut. Jeśli uda się to osiągnąć do 2025 roku, to będzie dobrze. Jeśli wcześniej, to jeszcze lepiej - mówi Wolf. Profesor David Anderson z University of Wisconsin mówi, że W7-X wygląda bardzo obiecująco. Już na wstępie maszyna osiągnęła imponujące wyniki. To zwykle trudny pracochłonny proces. Szybkość, z jaką zbudowany W7-X to dowód na wysoką jakość prac i bardzo dobry prognostyk dla samej koncepcji stellaratora. Uruchomienie W7-X to znaczące osiągnięcie - stwierdza. Stellarator jest współfinansowany m.in. przez Polskę. Obecnie na świecie działa kilkanaście stellaratorów, jednak W7-X jest pierwszym, którego wydajność może dorównać tokamakom. « powrót do artykułu- 8 odpowiedzi
-
- stellarator
- fuzja jądrowa
-
(i 2 więcej)
Oznaczone tagami: