Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'krzemionka' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 6 wyników

  1. Pył z krzemionki, niezwykle rozpowszechnionego materiału występującego na Ziemi, został odkryty w pozostałościach po dwóch supernowych. To pierwszy dowód wskazujący, że krzemionka powstaje wskutek eksplozji gwiazd. Coś tak powszechnego na Ziemi jest tworzone podczas jednych z najpotężniejszych eksplozji we wszechświecie. To źródło krzemionki, mówi współautor badań Haley Gomez, astronom z brytyjskiego Cardiff University. Astronomowie od dawna zastanawiali się, w jaki sposób powstaje pył kosmiczny. Początkowo sądzono, że tworzy się on z zastygającego wiatru gwiezdnego, który napotyka na zimną przestrzeń międzygwiezdną. Gdy jednak odkryto pył w galaktykach, które powstały na długo, zanim mogły pojawić się gwiazdy podobne do Słońca, stwierdzono, że pył musi mieć inne pochodzenie. Zaczęto podejrzewać, że pył pojawia się wskutek eksplozji supernowych. Dopiero jednak niedawno udało się odnaleźć w naszym pobliżu otoczone pyłem pozostałości po supernowych. Jeśli najnowsze odkrycie się potwierdzi i okaże się, że pył zawierający krzemionkę rzeczywiście powstawał wskutek wybuchów pierwszych supernowych, może to oznaczać, że już u zarania wszechświata tworzyły się planety podobne do Ziemi. To niezwykle ekscytujące dowiedzieć się, że tak wcześnie istniały składniki pozwalające na powstanie planet podobnych do Ziemi. To nie musiało trwać 13 miliardów lat, mówi Gomez. « powrót do artykułu
  2. Piasek kojarzy się z plażą czy budową domu, okazuje się jednak, że ditlenek krzemu, bo tak brzmi jego chemiczna nazwa, przyda się też kosmetologom i farmaceutom. Badacze z Australii Południowej opatentowali bowiem metodę uzyskiwania trwalszych kosmetyków i kremów kontrolujących dostarczanie przez skórę leków na bazie właśnie nanocząstek krzemionki. Obecnie zespół szuka możliwości komercjalizacji swojego wynalazku. By uzyskać emulsje wykorzystywane w wielu produktach kosmetycznych i terapeutycznych, posługujemy się specjalnie zaprojektowanymi nanocząstkami krzemionki – tak małymi, że na przekroju włosa zmieściłoby się ich ok. tysiąca – tłumaczy dr Nasrin Ghouchi-Eskandar z Instytutu Badawczego Iana Warka na Uniwersytecie Australii Południowej. Jej projekt został nagrodzony na organizowanej przez Muzeum w Melbourne imprezie Fresh Science. Z emulsjami stykamy się w życiu codziennym bardzo często, nawet o tym nie wiedząc, np. jedząc sałatkę z winegretem czy pijąc mleko. Najczęściej mamy do czynienia z trójskładnikowymi układami woda-olej-surfaktant (substancja powierzchniowo czynna). Surfaktanty są amfifilowe, co oznacza, że rozpuszczają się w dwóch różnych rozpuszczalnikach. Mają końcówkę hydrofilową (lubiącą wodę) i hydrofobową (nielubiącą wody). Na granicy faz tworzą monowarstwy, a w poszczególnych rozpuszczalnikach sferyczne agregaty (micele) z jednym rodzajem końcówki skierowanym ku środkowi, a drugim na zewnątrz. Pomysł Australijczyków polegał na tym, by zamiast substancji powierzchniowo czynnej zastosować nanocząstki piasku pokrywające krople tłuszczu. Pokrywanie niewielkich kropli krzemionką zwiększa stabilność mieszaniny, a także zmniejsza ryzyko, że zamknięte w środku składniki czynne ulegną degradacji lub zostaną uwolnione wcześniej, niż chcemy, a to dwa największe wyzwania dla naukowców pracujących nad formułami [kosmetyków i leków]. Stosując naszą metodę, stwierdziliśmy, że z klinicznego punktu widzenia, dostarczanie leków można usprawnić, regulując jego uwalnianie za pomocą grubości powłoki. Uwalnianie może być zarówno szybkie, jak i wolne, a to bardzo istotne, zważywszy, że czasem zależy nam na precyzyjnej lokalizacji dawkowania, a w niektórych przypadkach pozbycie się całego ładunku naraz groziłoby akumulacją związku i efektami toksycznymi. Okazało się, że nanocząstki krzemionki oddziałują na komórki skóry w taki sposób, że znacząco zwiększa się dostarczanie leków do określonych warstw skóry – mówi Ghouchi-Eskandar. Dzięki nim nie tylko można uzyskać wyższą koncentrację aktywnych składników, ale i ograniczyć przenikalność do krwioobiegu. Zmniejsza to ekspozycję innych części ciała na działanie kosmetyku, a zatem i jego toksyczność. Co ważne, całość jest także ekonomiczna. Opisane wyżej właściwości ditlenku krzemu sprawiają, że w interesującym nas środku może znajdować się mniej aktywnej substancji niż obecnie, gdyż jest ona skuteczniej dostarczana do celu.
  3. Takayuki Kaneko i zespół z Centrum Badań Wulkanologicznych Uniwersytetu Tokijskiego badają skały wyrzucone w latach 781-1707 przez Fudżi. W ten sposób udało im się odtworzyć prawdopodobną wewnętrzną strukturę wulkanu. Japończycy ustalili, że w ciągu stuleci stopniowo wzrastała zawartość krzemionki w magmie. Wysokie stężenia tego pierwiastka wskazują na duże i bardziej gwałtowne erupcje. Poza tym odkryto duże ilości bogatego w trójtlenek glinu bazaltu, który w zetknięciu z krzemionką może wywołać wybuch. Kaneko przeanalizował ciśnienia konieczne do utworzenia obu materiałów i wywnioskował, że są one przechowywane w dwóch oddzielnych komorach. Głębsza leży na głębokości 20 km i mieści magmę bazaltową, a druga – płytsza - znajduje się na głębokości 9 km. Tę ostatnią wypełnia dwutlenek krzemu. Szef zespołu opowiada, że wg niego, trzęsienia ziemi o niskiej częstotliwości z lat 2000 i 2001, którym towarzyszył niski pomruk, świadczą o ruchach w głębszej komorze z płynnym bazaltem. Przepowiadać by to miało kolejną rychłą erupcję. Inni specjaliści nie zgadzają się jednak z tą prognozą. Tłumaczą, że najpierw musiałoby dojść do napływu nowego bazaltu do głębszej komory, by przepchnąć wylewną skałę magmową w kierunku krzemionki.
  4. Choć metody wytwarzania ogniw słonecznych są coraz lepsze, inżynierowie wciąż nie radzą sobie z wieloma czynnikami utrudniającymi ich produkcję. Aby udoskonalić wytwarzane przez siebie panele, sięgają więc po naprawdę nietypowe sposoby. Najnowszym z nich jest wykorzystanie... okrzemek, czyli bardzo pospolitych glonów. Charakterystyczną cechą budowy okrzemek jest sztywna ściana komórkowa zbudowana z ditlenku krzemu (krzemionki). Mogłoby się więc wydawać, że jest to zwykły zmineralizowany pancerzyk, ale nic bardziej mylnego! Ta niepozorna struktura to w rzeczywistości miniaturowe dzieło biologicznej "inżynierii", posiadające unikalne właściwości optyczne, mogące znacząco ułatwić produkcję ogniw słonecznych. Na pomysł wykorzystania mikroorganizmów do wytwarzania ogniw wpadli naukowcy z Uniwersytetu Stanu Oregon, kierowani przez prof. Grega Rorrera. Planują oni stworzenie ogniw, w których dochodzi do "uwięzienia" fotonów światła i pochłonięcia znacznej ilości energii podczas ich odbić wewnątrz innowacyjnej struktury. Do produkcji paneli wykorzystuje się płyty szklane, które zostają umieszczone w zbiorniku wypełnionym okrzemkami. Po pewnym czasie glony osiadają na gładkiej powierzchni i przylegają do niej. Następnym etapem jest usunięcie materii organicznej (a więc wszelkich struktur komórkowych) bez naruszania krzemionkowych skorupek. Gdy jedyną pozostałością po okrzemkach jest ditlenek krzemu, płyty przenosi się do roztworu z zawieszonymi drobinami tytanu. Za pomocą specjalnego środka utlenia się go do ditlenku tytanu (TiO2), który osiada na porowatej powierzchni krzemionkowych skorupek. Pełni on funkcję półprzewodnika i działa podobnie jak w standardowych ogniwach, lecz dzięki wyjątkowemu ukształtowaniu podłoża fotony światła mogą wielokrotnie odbijać się i przetwarzać większą część własnej energii na energię elektryczną wytwarzaną przez ogniwo. Wydajność ogniwa jest wyższa od większości znanych obecnie rozwiązań. Co więcej, do jego wytwarzania nie jest wymagane stosowanie agresywnych i niebezpiecznych dla środowiska chemikaliów, koniecznych podczas produkcji standardowych ogniw słonecznych. Jak przyznaje prof. Rorrer, przemiany fizyczne zachodzące pod tytanową powierzchnią nie zostały jeszcze dokładnie poznane. Wiele wskazuje jednak na to, że sekretem skuteczności wynalazku jest wnikanie ditlenku tytanu do wnętrza porowatej struktury krzemionki. Pozwala to na przechwytywanie nie tylko tych fotonów, które odbijają się od powierzchni szklanej płyty, lecz także tych, które przeniknęły głębiej. Niestety, autorzy nowoczesnych ogniw nie poinformowali, kiedy mogłyby one trafić na rynek.
  5. Pioruny kuliste intrygowały naukowców co najmniej od 1752 roku, kiedy to Benjamin Franklin przeprowadził swój słynny eksperyment z elektrycznością. Uczeni zastanawiali się nad ich naturą, a obecnie wydaje się, że w końcu wiedzą, w jaki sposób pioruny takie powstają. Przed laty profesorowie John Abrahamson i James Dinniss z nowozelandzkiego University of Canterbury sformułowiali hipotezę, wedle której piorun kulisty to nic innego jak odparowany krzem. Obecnie Antonio Pavo i Gerson Paiva z Federalnego Uniwersytetu w Pernambuco (Brazylia), sprawdzili teorię w praktyce. Teoria mówi, że gdy piorun uderzy w miejsce, w którym znajduje się piasek lub krzemionka (dwutlenek krzemu), może dojść, w obecności węgla, do odparowania krzemu. Powstanie w ten sposób krótkotrwała, świecąca kula, która będzie unosiła się w powietrzu. Wedle tej teorii świecenie spowodowane wywołane jest ciepłem, które powstaje gdy opary krzemu wchodzą w reakcję z tlenem. Cząstki krzemu gromadzą się na powierzchni sfery i są w niej utrzymywane dzięki ładunkom elektrycznym. Pavo i Paiva, chcąc sprawdzić tę hipotezę, przyłożyli do kawałka krzemu grubości 350 mikronów łuk elektryczny o wysokim napięciu i natężeniu wynoszącym 140 amperów. Po odsunięciu elektrod powstała świecąca, unosząca się w powietrzu kula wielkości piłeczki golfowej. Krzem został całkowicie odparowany. W warunkach naturalnych konieczna jest obecność węgla, bo tlen zawarty w dwutlenku krzemu "lubi” węgiel. Gdy piorun odparuje dwutlenek krzemu, wówczas tlen łączy się z węglem, pozostawiając opary czystego krzemu, które tworzą piorun kulisty. Brazylijczycy nieco uprościli swój eksperyment, rozpoczynając od czystego krzemu – mówi Graham Hubler, fizyk z Morskiego Laboratorium Badawczego Amerykańskiej Marynarki Wojennej (U.S. Naval Research Laboratory). Pavo i Paiva poinformowali, że stworzona przez nich kula "żyła” przez osiem sekund, syczała, wydobywał się z niej dym i wykazywała wszystkie inne cechy, które spotykamy w opisach piorunów kulistych. Brazylijscy uczeni zaobserwowali, że kula obracała się wokół własnej osi. Temperatura laboratoryjnego pioruna kulistego została oceniona na około 1727 stopni Celsjusza. Naukowcy chcą obecnie sprawdzić, czy piorun kulisty może powstać wskutek odparowania innych składników gruntu, takich jak metale czy związki siarki.
  6. Część turystów i bedekerów twierdzi, że szybki witraży średniowiecznych katedr wyglądają, jakby stopniowo się topiły. Niektóre są ponoć cieńsze na górze i grubsze u dołu. Aby wyjaśnić tę kwestię, trzeba się wgłębić we właściwości fizyczne szkła. W rzeczywistości szkło to ciało amorficzne (bezpostaciowe). Oznacza to, że jest ciałem stałym, ale cząsteczki, które je tworzą, nie są aż tak uporządkowane, jak w kryształach. Ich ułożenie jest w rzeczywistości dość chaotyczne, podobnie jak w cieczach. Z tego powodu mówi się nawet o tzw. cieczach przechłodzonych. Zazwyczaj niewielkie obszary, zwane domenami, fazy krystalicznej przeplatają się z fazą amorficzną. Szkło może się cechować większą lub mniejszą zawartością fazy amorficznej. Gdy jest jej dużo, staje się mętne, łatwiej się topi i trudniej kruszy. Opisane właściwości nie wystarczą jednak do tego, by wyjaśnić kształt katedralnych okien, ponieważ atomy w szkle przemieszczają się zbyt wolno, aby zmiany stały się widzialne gołym okiem. Podczas produkcji szkła wsad (który często zawiera dużo krzemionki) szybko się ochładza. Gdy temperatura spada poniżej punktu krzepnięcia, nie jest on jednak ciałem stałym, ale przechłodzoną cieczą. Aby otrzymać szkło, trzeba dalej obniżać temperaturę. Poniżej temperatury zeszklenia (inaczej mówiąc: przejścia w szkło) ruch cząsteczek zostaje w zasadzie zatrzymany — tłumaczy Mark Ediger, profesor chemii z University of Wisconsin–Madison — i na scenie zdarzeń pojawia się ciało amorficzne. Podobnie jak ciecze, może ono bardzo powoli "spływać". Z biegiem czasu cząsteczki dążą do utworzenia niby-krystalicznej struktury. Jeśli proces produkcyjny (ochładzanie) zakończono bliżej temperatury zeszklenia, wewnątrz materiału odnotowuje się więcej ruchów. Co ciekawe, starsze niż średniowieczne wiszące elementy szklane, np. pochodzące ze starożytnego Egiptu, nie wyglądają jak topniejąca galaretka. Wspomina o tym m.in. Robert Brill, specjalista ds. szkła antycznego z Corning Museum of Glass. Witraże nie powinny zmieniać swojej formy, ponieważ ich temperatura odbiega o setki stopni od temperatury przejścia w szkło. Modelowanie matematyczne wykazało, że w temperaturze pokojowej czas przemiany szkła w postać "nadtopioną" przewyższyłby wiek wszechświata. Swój wygląd średniowieczne szyby zawdzięczają najprawdopodobniej ówczesnej technologii produkcyjnej. Rzemieślnicy najpierw wydmuchiwali balony, które następnie przekuwano w tafle. Wskutek tego nigdy nie były idealnie płaskie, a szklarze wprawiający je w kościołach z jakiegoś powodu upodobali sobie umieszczanie cieńszej części na górze. Topniejący image to złudzenie, a nie oznaka, że szkło jest cieczą.
×
×
  • Dodaj nową pozycję...