Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'helisa' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. Technika DNA origami, czyli tworzenie struktur przestrzennych z wykorzystaniem odpowiednio przygotowanych nici kwasu deoksyrybonukleinowego, osiągnęła nowy poziom rozwoju. Dzięki eksperymentom przeprowadzonym przez badaczy z Brigham Young University (BYU) z cząsteczek DNA udało się stworzyć kompleksy przypominające swoim kształtem... litery alfabetu. Dlaczego tworzenie tak błahych struktur jest w ogóle traktowane jako badania naukowe? Odpowiedź jest prosta: ich powstanie jest dowodem na możliwość tworzenia nanocząstek o ściśle zaplanowanym kształcie i wielkości oraz wartości kątów pomiędzy poszczególnymi elementami. Potencjalne zastosowania dla takich konstrukcji są niezliczone i obejmują m.in. tworzenie mikroskopijnych przewodów elektrycznych czy gotowych części do nanomaszyn. Cząsteczki DNA origami powstają w wyniku działania zasady komplementarności. Zgodnie z nią, dwie jednoniciowe cząsteczki DNA (lub dwa odcinki tej samej nici) łączą się ze sobą niczym połowy zamka błyskawicznego i tworzą nić podwójną tylko wtedy, gdy ich fragmenty zawierają wzajemnie dopasowaną (komplementarną) sekwencję zasad azotowych. Synteza cząsteczek o odpowiedniej sekwencji zasad umożliwia więc stworzenie kompleksu o ściśle zaplanowanych miejscach łączenia się nici. W praktyce okazuje się, że sama zasada komplementarności nie wystarcza, by stworzyć wiele nieskomplikowanych, lecz ważnych kształtów, takich jak np. kąt prosty. Naukowcy z BYU znaleźli jednak sposób na rozwiązanie tego problemu. Aby uzyskać wiązki DNA rozchodzące się pod kątem ok. 90°, zsyntetyzowano cząsteczki, w których połączeniu w paru ulegały długie sekwencje zasad. Powstanie takich struktur oznaczało usztywnienie całej nici, dzięki czemu powstały "linie proste". Miejsca, w których zasady azotowe pochodzące z poszczególnych odcinków nie uległy połączeniu w pary, były znacznie bardziej elastyczne i stawały się naturalnymi "zawiasami", w których dochodziło do wygięcia nici. Dzięki odpowiedniemu rozmieszczeniu miejsc "zawiasowych" udało się rozłożyć wewnętrzne naprężenia wewnątrz cząsteczki tak, by najkorzystniejszą termodynamicznie (a więc przyjmowaną w większości przypadków) konfiguracją było wygięcie tych regionów pod kątem prostym. Efektem pracy naukowców z Brigham była synteza cząsteczek przypominających swoim kształtem inicjały nazwy ich uczelni: BYU. Z pozoru jest to tylko niewinna zabawa, lecz ukazuje ona ogromny potencjał tkwiący w nowej wersji DNA origami. Choć metoda "składania" DNA jest wciąż w powijakach, już dziś można przewidzieć jej możliwe zastosowania. Wytworzone cząsteczki mogą posłużyć np. jako rusztowania, na których osadzana będzie warstwa przewodnika elektrycznego, z którego powstanie następnie miniaturowy przewód W podobny sposób, tylko z wykorzystaniem materiałów o większej wytrzymałości mechanicznej, można by produkować elementy nowoczesnych maszyn lub różnego rodzaju tworzywa. Nietrudno więc zauważyć, że umiejętne manipulowanie podstawowym nośnikiem informacji biologicznej daje nam znacznie więcej, niż tylko możliwość kontrolowania procesów zachodzących w organizmach żywych. Zdjęcia cząstek stworzonych przez badaczy z BYU są dostępne na tej stronie.
  2. Małe, autonomiczne roboty, które wewnątrz ludzkiego organizmu wykonują procedury medyczne, to wciąż przyszłość. Jednak, dzięki opracowaniu miniaturowego silnika, przyszłość coraz bliższa. Jeśli chcemy, by w naszych żyłach mogły pływać roboty, musimy zapewnić im napęd. Problem w tym, że tradycyjne silniki, w miarę postępów miniaturyzacji, mają coraz większe problemy z przezwyciężeniem wewnętrznej siły tarcia. Przy pewnym stopniu miniaturyzacji silnik nie jest w stanie się poruszyć. Dlatego też naukowcy od pewnego czasu badają możliwości materiałów piezoelektrycznych, zmieniających swoją wielkość pod wpływem napięcia elektrycznego. Kryształ, który na przemian kurczy się i rozciąga, może bardzo szybko poruszać urządzenie na przemian w przód i w tył. Jednak do tego, by urządzenia napędzane miniaturowym silnikiem poruszały się naprawdę, potrzebny jest silnik z ruchem obrotowym. Profesor Metin Sitti, szef NanoRobotics Laboratory na Carnegie Mellon University opracował odpowiedni silnik, wzorując się na wici mikroorganizmów i wykorzystując kryształy piezoelektryczne. Sztuczna wić została stworzona z wielu kryształów, połączonych tak, by tworzyły kształt przypominający helisę. Uruchomienie kryształów powoduje, że ich ruch w przód i w tył przekłada się na ruch obrotowy całej helisy. Mamy więc do czynienia z miniaturowym silnikiem z ruchem obrotowym, w przypadku którego nie musimy martwić się o konieczność przezwyciężania siły tarcia w samym urządzeniu. Prototypowy silnik ma szerokość 1/4 milimetra i jest o 70% mniejszy niż poprzedni rekordzista. Tak niewielkie urządzenie daje nadzieję, że w przyszłości możliwe będzie wprowadzenie go do ludzkiego krwioobiegu i przeprowadzenie np. zabiegu wewnątrz mózgu. W laboratorium silnik sprawuje się bardzo dobrze. Trzeba jednak jeszcze sprawdzić, jak poradzi sobie w różnego rodzaju płynach. Nawet jeśli okaże się, że nie można wprowadzić go do ludzkiego organizmu, z pewnością znajdzie zastosowanie jako napęd miniaturowych latających robotów.
  3. Nić DNA jest znacznie bardziej elastyczna, niż dotychczas sądzono - donoszą amerykańscy naukowcy. Odkrycie może mieć niebagatelne znaczenie dla badań z zakresu biologii molekularnej i genetyki. Cząsteczki DNA przyjmują kształt tzw. podwójnej helisy, czyli dwóch sprężynowato skręconych, równoległych nici. Wielu innych autorów opisuje tę samą molekułę jako "skręconą drabinę", złożoną z szkieletu zbudowanego z cząsteczek cukru (deoksyrybozy) i reszt kwasu fosforowego oraz "szczebli" w postaci zasad azotowych będących nośnikiem informacji genetycznej. Tak zbudowana cząsteczka musiała być zdaniem wielu badaczy bardzo sztywna. Dzięki naukowcom z Uniwersytetu Stanforda dowiadujemy się jednak, że rzeczywistość wygląda nieco inaczej. Do zbadania charakterystyki molekuł DNA zastosowano promieniowanie rentgenowskie. Do obu końców badanej cząsteczki przyłączono nanokryształy złota, wykazujące zdolność do bardzo silnego zatrzymywania promieni X. Samą nić ułożono równolegle do "molekularnej linijki", czyli specjalnej płytki gęsto pokrytej liniami służącymi do pomiaru długości. Następnie, dzięki odpowiedniemu manipulowaniu różnymi parametrami otaczającego cząsteczkę środowiska, badano stopień rozciągnięcia helisy na podstawie pomiaru wzajemnej odległości obu nanokryształów złota. Wynik ten korygowano, oczywiście, w związku z "obciążeniem" w postaci metalowych cząstek. Na podstawie serii eksperymentów wykazano, że podwójna helisa może zarówno kurczyć się, jak i rozciągać, nawet o 10%. Jej elastyczność jest więc znacznie wyższa, niż dotychczas sądzono. Co ciekawe, okazało się także, że "ściśnięcie" lub oddalenie od siebie dwóch kolejnych par zasad powoduje analogiczną zmianę w kolejnych zwojach "drabiny". Dokonane odkrycie jest znacznie istotniejsze, niż można przypuszczać. Dokładne zrozumienie organizacji przestrzennej DNA pozwoli na lepsze zbadanie jego interakcji z wieloma innymi cząsteczkami, głównie z białkami odpowiedzialnymi za regulację aktywności genów oraz replikację materiału genetycznego. Dane te mają niebagatelne znaczenie dla badania wielu trapiących nas chorób oraz procesów zachodzących w naszych organizmach.
  4. Międzynarodowy zespół naukowców zauważył, że pewne struktury nieorganiczne mogą w określonych warunkach zachowywać się jak związki organiczne. Spostrzeżenie to pozwala przypuszczać, że do powstania życia obecność węgla nie jest konieczna i że na innych planetach może się ono znacznie różnić od tego, co widzimy na Ziemi. Życie na naszej planecie opiera się na związkach organiczych, czyli takich, w skład których wchodzi węgiel (oprócz tlenków węgla, węglanów, wodorowęglanów itp.). Być może jednak brak związków organicznych wcale nie oznacza, że życie nie może powstać. Profesor Wadim Cytowicz z Instytutu Fizyki Rosyjskiej Akademii Nauk we współpracy z kolegami z Instytutu Maxa-Plancka i Uniwersytetu w Sydney badał zachowanie struktur nieorganicznych w plazmie. Dotychczas naukowcy uważali, że cząsteczki w plazmie są bardzo słabo zorganizowane. Tymczasem okazało się, że w momencie gdy ładunki elektryczne zostają odseparowane i plazma się polaryzuje, dochodzi do samoorganizowania się cząstek. Samoistnie łączą się one w struktury przypominające helisę DNA. Te łańcuchy helis nie są elektrycznie obojętne i przyciągają się wzajemnie. Uczeni ze zdumieniem stwierdzili, że nieorganiczne helisy nie tylko oddziałują na siebie, ale również przechodzą zmiany podobne do tych, zachodzących w DNA czy białkach. Mogą się na przykład dzielić tak, by stworzyć dwie identyczne kopie oryginalnego łańcucha. Kopie z kolei potrafią wpływać na sąsiednie łańcuchy. Zauważono też swoistą ewolucję nieorganicznych helis: mniej trwałe struktury rozpadają się, a pozostają tylko te bardziej solidne. Te złożone, samoorganizujące się struktury plazmowe wykazują wszystkie cechy, które pozwalają zakwalifikować je jako nieorganiczną żywą materię. Są autonomiczne, reprodukują się i ewoluują – mówi profesor Cytowicz. Dodaje przy tym, iż warunki konieczne do powstania takich struktur są bardzo często spotykane w kosmosie. Plazma może powstawać w sposób naturalny również na Ziemi. Ma to miejsce np. podczas uderzenia pioruna.
×
×
  • Dodaj nową pozycję...