Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'geometria symplektyczna'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 1 result

  1. Zasada nieoznaczoności Heisenberga mówi, że pewnych par wielkości nie można dokładnie zmierzyć. Pomiar jednej zakłóca bowiem odczyt drugiej. Z zasady tej wynika, że w fizyce kwantowej nie jesteśmy w stanie dokładnie zmierzyć jednocześnie położenia i pędu cząstki. Możemy tylko wyciągnąć średnią z całej serii pomiarów. Jest to jedna z głównych przeszkód na drodze do zbudowania komputera kwantowego, w którym przecież musimy dokładnie mierzyć, czyli odczytywać, kwantowe dane. Tymczasem Maurice de Gosson z Uniwersytetu Wiedeńskiego twierdzi, że zasada nieoznaczoności ma więcej wspólnego z geometrią symplektyczną niż z fizyką kwantową. Zdał on sobie sprawę, że teorie z dziedziny geometrii symplektycznej są paralelne do zasady nieoznaczoności. Swoje odkrycie de Gosson nazwał symplektycznym wielbłądem, odnosząc się w ten sposób do biblijnej przypowieści o zwierzęciu, które prędzej przejdzie przez ucho igielne niż bogacz trafi do nieba. De Gosson proponuje, by wyobrazić sobie wszystkie możliwe położenia danej cząsteczki w formie kuli. Moglibyśmy określić jej dokładne położenie pod warunkiem, że bylibyśmy w stanie ścisnąć tę kulę do wielkości samej cząsteczki. Jednak fakt, iż nie możemy tego zrobić nie wynika z fizyki kwantowej a właśnie z zasad geometrii. Teoria de Gossona może mieć niezwykle ważne implikacje. Jeśli jest prawdziwa, to zasada nieoznaczoności ma naturę klasyczną, a nie kwantową. Być może uda się zatem przełożyć to, co dzieje się w świecie kwantowym na geometrię symplektyczną i w ten sposób rozwiązać pewne nierozwiązywalne dotychczas problemy. Przede wszystkim trzeba zbadać, czy spostrzeżenie de Gossona do jedynie przypadkowa zależność czy też głębokie powiązanie pomiędzy fizyką kwantową a geometrią. John Norton, filozof fizyki z University of Pittsburgh zwraca uwagę na poważną lukę w teorii de Gossona. Otóż nieoznaczoność w położeniu i pędzie cząsteczki jest zawsze większa niż wielkość reprezentowana przez stałą Plancka. Tymczasem u de Gossona brak jakiejkolwiek stałej.
×
×
  • Create New...