Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'gaz Fermiego' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Naukowcy będą mogli studiować pod mikroskopem właściwości supergęstych gwiazd neutronowych, materii z momentu Wielkiego Wybuchu, czy weryfikować założenia teorii strun oraz projektować nadprzewodniki. A to wszystko dzięki zimnemu gazowi Fermiego. Gaz Fermiego to model, tzw. idealny gaz kwantowy, nazywany czasem szóstym stanem materii. John Thomas, fizyk z Duke University, wcielił ten koncept w życie, schładzając atomy litu-6 do temperatury bliskiej zeru absolutnemu (milionowe i miliardowe części Kelvina) i chwytając je w pułapkę - milimetrowej wielkości miseczkę stworzoną przez promienie lasera. Taka próbka, poddana dodatkowo działaniu odpowiednio dobranego pola magnetycznego zyskuje wyjątkowe właściwości, wśród nich niemal całkowity brak oporu podczas przepływu. To zjawisko podobne do nadciekłości, a dzieje się tak, ponieważ atomy gazu Fermiego oddziałują ze sobą tak silnie, jak tylko to możliwe. Eksperyment ma na celu zbadanie lepkości takiego gazu. Gaz Fermiego zachowuje się w różny sposób, w zależności od temperatury. Uwalniając schłodzone do miliardowych części Kelvina atomy z laserowej pułapki i chwytając ponownie wywołuje się ich drgania, które upodabniają próbkę do trzęsącej się galaretki. Mierząc oscylacje, można określić dokładnie lepkość próbki. W nieco wyższych temperaturach, rzędu milionowych części Kelvina, uwalniany gaz zmienia kształt z „cygara" na „naleśnik", z szybkością również zależną od temperatury. W tak niskich temperaturach właściwości gazu zależą od najmniejszej naturalnej podziałki, czy „linijki" - odległości pomiędzy atomami. Rozmiar ten określa skalę dla energii, temperatury, czy lepkości właśnie. Taki egzotyczny stan materii występuje w naturze, ale nie sposób go tam badać. Na przykład gwiazdy neutronowe, poza tym, że nieosiągalne, są tak gęste, że najmniejszy okruch ważyłby setki lub tysiące ton. Interesującego kosmologów stanu materii w kilka mikrosekund po Wielkim Wybuchu (plazma kwarkowo-gluonowa) również nie da się bezpośrednio badać. Stworzenie w laboratorium skalowalnego modelu niektórych właściwości tych stanów pozwoli na weryfikację różnych hipotez i założeń. Po przeprowadzeniu odpowiednich wyliczeń dla niskich temperatur będzie można ocenić również niektóre założenia teorii strun. W zastosowaniach bardziej praktycznych, płynność doskonała, jaką uzyskuje stworzony gaz Fermiego, pozwoli badać oczekiwane właściwości wysokotemperaturowych nadprzewodników. O swoim eksperymencie opowiada sam John Thomas:
×
×
  • Dodaj nową pozycję...