Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'Paulo Nussenzveig'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 1 result

  1. Fizykom z uniwersytetu w São Paulo, Erlangen-Nuremberg i Instytutu Maksa Plancka udało się doprowadzić do kwantowego splątania trzech wiązek światła o różnych długościach. Dotychczas udawało się to w przypadku dwóch wiązek, a autorzy badań mówią, że dopiero trzy splątane wiązki mogą służyć jako węzły przyszłych sieci kwantowych. Nad komputerami i sieciami kwantowymi pracuje wiele grup badawczych. Prowadzą one bardzo różne projekty i już teraz możemy stwierdzić, że żadne pojedyncze rozwiązanie nie pozwoli na zbudowanie kwantowych sieci i maszyn. Każde z nich ma pewne zalety, ale i wady. Stąd też najprawdopodobniej systemy kwantowe będą systemami hybrydowymi, wykorzystującymi różne rozwiązania do osiągnięcia jednego celu. Jak mówi Paulo Nussenzveig z uniwersytetu w São Paulo, wśród obiecujących kandydatów do budowy systemów kwantowych znajdują się techniki tworzenia pułapek jonowych, kropki kwantowe, polarytony. W badaniach wykorzystuje się też nadprzewodniki, pole magnetyczne czy mikrofale. To obrazuje stopień skomplikowania i pokazuje, iż prawdopodobnie będziemy mieli do czynienia z systemem, na który złoży się wiele rozwiązań. Jednak rozwiązania te będą charakteryzowały się różnymi właściwościami, a więc w różny sposób będzie przebiegała ich interakcja ze światłem. Stąd konieczność stworzenia systemu przesyłu informacji, który poradzi sobie z tym zadaniem i dlatego tak ważne są badania przeprowadzone przez niemiecko-brazylijski zespół. By to zobrazować, Nussenzveig posługuje się następującym przykładem. Wyobraźmy sobie, że chcemy przesłać informację składowaną w atomach rubidu do odległego węzła sieci. Atomy drgają w odpowiedzi na światło o długości 780 nanometrów, ale fala taka słabo rozprzestrzenia się w sieciach optycznych. Musimy więc zmienić jej długość na 1550 nm. A na drugim końcu łącza mamy kropki kwantowe, w których chcemy zapisać przesłane informacje. Kropki reagują na światło o długości fali 800 nm. Dzięki splątaniu trzech fal możemy dokonać takiej operacji. Dodaje przy tym, że to, co zostało obecnie osiągnięte to jedynie dowód, że splątanie trzech długości fali jest możliwe. Na razie techniki tej nie da się wykorzystać w praktyce. Splątania trzech fali dokonano za pomocą parametrycznego oscylatora optycznego. Naukowcom udało się dzięki niemu uzyskać fale o długości 532, 1062 i 1066 nanometrów. Podczas badania splątanych fali okazało się, że czasem może dość do nagłej utraty stanu splątania, co zaburzy komunikację. Kolejne eksperymenty dowiodły jednak, że nie zdarza się to przy każdych częstotliwościach, co oznacza, że stany splątane nie mają identycznej natury. Ta obserwacja będzie przydatna na innych polach, gdyż wskazuje, że jeszcze jest sporo do odkrycia na temat natury i dynamiki splątania kwantowego. Większość ludzi sądzi, że wiemy już niemal wszystko o splątanych stanach Gaussa. My jednak zaobserwowaliśmy dwa stany Gaussa, oba ze splątaniem trzech elementów, które charakteryzowały się różną trwałością. Miały więc różne właściwości. Dlaczego tak się dzieje? Jak możemy przewidzieć, czy pewne splątane stany Gaussa będą trwałe czy też nie? Sądzimy, że ciągle czeka nas znalezienie odpowiedzi na podstawowe pytania - mówi Nussenzveig.
×
×
  • Create New...