Znajdź zawartość
Wyświetlanie wyników dla tagów 'Mark Schnitzer' .
Znaleziono 2 wyniki
-
Neurolodzy ze Stanford University stworzyli endoskop, który pozwala na wielomiesięczne monitorowanie wybranego obszaru w mózgu. Dzięki temu możliwe będzie np. śledzenie na bieżąco zmian zachodzących w mózgach mysich modeli cierpiących na choroby neurodegeneracyjne. Tradycyjna mikroskopia pozwala zajrzeć w głąb mózgu jedynie na odległość 700 mikronów. Co prawda ostatnie osiągnięcia na polu mikrooptyki umożliwiały na krótkie zerknięcie w głębsze struktury żywych tkanek, jednak po pierwsze niemal niemożliwe jest ponowne trafienie w dokładnie to samo miejsce, po drugie zaś - istnieje duże ryzyko uszkodzenia lub zainfekowania tkanki. Nowa technika zakłada wykorzystanie niewielkich (czterokrotnie węższych od ziarna ryżu) szklanych rurek, które umieszcza się głęboko w mózgu myszy. Po ich zastosowaniu tkanka nie ma kontaktu ze światem zewnętrznym, nie ma więc ryzyka infekcji. Aby monitorować mózg, wystarczy w rurkach umieścić mikroendoskop. Rurki pozwalają na powrót endoskopem w dokładnie te same miejsca. Dzięki temu możliwe jest np. obserwowanie wzrostu czy zanikania tkanki lub też wpływu eksperymentów na jej rozwój. Już podczas testowania nowej techniki zauważono ważny proces. Okazało się, że pewne oznaki rozwoju glejaka, o których wcześniej sądzono, iż występują jedynie w pobliżu powierzchni, pojawiają się w głębokich strukturach mózgu. Profesor neurologii Lawrence Recht mówi, że stopień złośliwości glejaka zależy od lokalizacji guza. Najbardziej agresywne tworzą się głęboko - stwierdza uczony. Obecnie nie wiadomo, dlaczego tak się dzieje, a nowa technika, jak ma nadzieję naukowiec, może pozwolić na zrozumienie tego mechanizmu. Autorami wynalazku są uczeni pracujący pod kierunkiem Marka Schnitzera - Robert Barretto, Tony Ko i Juergen Jung.
- 7 odpowiedzi
-
- Mark Schnitzer
- mikroendoskop
-
(i 3 więcej)
Oznaczone tagami:
-
Miniaturowe mikroskopy, które będzie można montować wewnątrz czaszki transgenicznych myszy, pozwolą połączyć aktywność neuronów z konkretnymi zachowaniami zwierzęcia. To ważne, ponieważ zmodyfikowane gryzonie od lat służą jako modele różnych ludzkich chorób, np. astmy, parkinsonizmu czy zaburzeń genetycznych (Nature Methods). Twórcą takiego podejścia jest Mark Schnitzer z Uniwersytetu Stanforda. Dużo nad tym pracowano, używając np. preparatów z wycinkami mózgu lub znieczulonych zwierząt, czasem też świadomych, ale trzymanych w ryzach. Do tej pory nie udało się jednak zaobserwować aktywności na poziomie komórkowym u wolno poruszających się myszy. Mikroskop zespołu Schnitzera waży zaledwie 1,1 g. Zwierzę nie jest go więc w stanie wykryć, w niczym mu też nie przeszkadza. Został już użyty do oglądania przepływu krwi przez mózgowe naczynia włosowate o przekroju jednej komórki. Urządzenie zakłada się w znieczuleniu. W tym samym czasie wykonuje się zastrzyk, by specjalnym barwnikiem oznaczyć osocze krwi, ale nie same krwinki. Mikroskop ma swoje własne źródło światła: rtęciową lampę łukową. Jest ono dostarczane za pomocą wiązki światłowodów. Światło powoduje, że osocze zaczyna fluoryzować, a krwinki wyglądają na tym tle jak ciemne punkty. Światłowody przewodzą obraz do kamery, która go utrwala z szybkością 100 klatek na sekundę. Gdy znieczulenie przestaje działać, naukowcy mogą obserwować, co dzieje się w mózgu normalnie funkcjonującej myszy. Carl Petersen ze Swiss Federal Institute of Technology w Lozannie docenia metodę, ale wskazuje też na jej ograniczenia. Wg niego, neurony mocno rozpraszają światło, dlatego mikroskop Schnitzera jest w stanie wykonać tylko zdjęcia komórek znajdujących się w jego pobliżu. Krytykuje też, że nie daje on możliwości tworzenia przekrojów optycznych, by określić trójwymiarową strukturę tkanki. Sam Schnitzer twierdzi, że to celowy zabieg, który zmniejsza wrażliwość instrumentu. W ten sposób nie uwzględnia się artefaktów, powstających podczas poruszania się zwierzęcia.
- 2 odpowiedzi
-
- choroby
- obserwacja
-
(i 7 więcej)
Oznaczone tagami: