Znajdź zawartość
Wyświetlanie wyników dla tagów 'Ernst Rasel' .
Znaleziono 1 wynik
-
Gdyby przeprowadzić test, co najbardziej zostaje nam w głowach ze szkolnej fizyki, zapewne prym wiodłyby przeczące instynktowi wiadomości o spadaniu. Bo chyba niemal każdy pamięta, że prędkość spadania zależy tylko od grawitacji, nie zależy zaś w ogóle od masy ciała. Dlatego piórko, kamyk i fortepian, zrzucone z tego samego wieżowca, będą spadać z jednakową szybkością - oczywiście jeśli usuniemy zakłócające pomiar powietrze. Niemal tak samo powszechna jest wiedza, że swobodne spadanie nie różni się od swobodnego lewitowania w zerowej grawitacji - oczywiście jeśli pominiemy skutki spadania, czyli bolesne gruchnięcie o ziemię. Każdy zresztą może w ten sposób doświadczyć lewitacji, wystarczy wynająć odpowiedni samolot, który będzie swobodnie spadał przez kilkanaście sekund, takie atrakcje dostępne są komercyjne. Te spostrzeżenia na temat spadania legły u podstaw ogólnej teorii względności Einsteina. Fachowo nazywa się to równoważnością masy grawitacyjnej i masy bezwładnościowej. Jednak zasada równoważności masy nie wynika z żadnego prawa, jest jedynie postulatem. Czy zatem na pewno jest słuszna? Wydawałoby się, że dotychczasowe próby i doświadczenia, jak eksperymenty Eötvösa z wirującymi elementami, dowiodły jego słuszności bez cienia wątpliwości. Dotychczas tak, ale zawsze używano do tego celu stworzonych przez człowieka obiektów makroskopowych. Ale czy zasada równoważności masy obowiązuje również obiekty mniejsze - jak cząstki elementarne? Wiadomo, że fizyka klasyczna rządzi się innymi prawami niż fizyka kwantowa. Do dziś nie udało się ich powiązać, ani objąć żadną nadrzędną teorią, sam Einstein nie potrafił poradzić sobie z tą sprzecznością. Nie wiadomo zatem, jakie efekty dałyby podobne eksperymenty w dziedzinie, gdzie zaczyna rządzić mechanika kwantowa. Ponad wiek po sformułowaniu postulatu równoważności przez Einsteina nadszedł czas na jego zweryfikowanie. Powiedzieć łatwo, wykonać trudno Założenie jest proste: zrzucić w dół szybu obiekty kwantowe. Nieproste jest wykonanie takiego doświadczenia. Dopiero teraz rozwiązanie problemu opisali naukowcy z Uniwersytetu Leibniza w niemieckim Hanowerze. Ernst Rasel zaproponował, aby jako zrzucanego obiektu użyć kondensatu Bosego-Einsteina. Kondensat ten to gaz schłodzony do tak niskiej temperatury, że jego atomy zachowują się jak jedna cząsteczka (fachowo mówiąc, jest to efekt kwantowy w którym bozony uzyskują taki sam pęd, czyli obsadzają stan podstawowy, ale niekoniecznie trzeba to wiedzieć). Normalnie uzyskanie takiego stanu, czyli schłodzenia gazu do zaledwie miliardowych części stopnia powyżej zera absolutnego wymaga skomplikowanej aparatury zajmującej obszerne pomieszczenie: precyzyjnie skalibrowanych laserów, próżniowych komór i zaawansowanej elektroniki. Osiągnięciem hanowerskich badaczy jest upakowane całego urządzenia do kapsuły o średnicy 61 centymetrów i długości 165 centymetrów. Tę można zrzucać z wysokiej na 148 metrów wieży w Bremen, skonstruowanej właśnie do takich eksperymentów. Doświadczenie ze schłodzonym rubidem, powtórzone 180 razy, dowiodło że można obserwować zachowanie kondensatu Bosego-Einsteina z wysoką precyzją. Najbliższy cykl doświadczeń ma na celu porównanie zachowania kondensatów dwóch różnych pierwiastków, rubidu i potasu i stwierdzenie, czy zachowują się identycznie podczas swobodnego spadania. W przyszłości mają być prowadzone obserwacje na orbicie, w warunkach prawdziwej nieważkości. Podczas gdy eksperyment orbitalny może być prowadzony bez przerwy nawet latami, badania swobodnego upadku, z oczywistych powodów, muszą być wielokrotnie powtarzane, żeby uzyskać odpowiednią ilość danych: upadek z wieży w Bremen trwa zaledwie 4 sekundy. Naukowcy chcą zbadać obszar powiązań między mechaniką klasyczną a kwantową, tam, gdzie przebiega między nimi granica. Mają nadzieję na uzyskanie nowego, interesującego spojrzenia na różnice między procesami fizyki klasycznej i kwantowej, a być może nawet na znalezienie klucza do jednej, ujmującej je obie, teorii.
- 5 odpowiedzi
-
- Ernst Rasel
- kondensat Bosego-Einsteina
- (i 6 więcej)