Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' wydruk' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Naukowcy z Politechniki Opolskiej (PO) opracowali i wydrukowali model 3D żyły z guzem w środku. Zrobili to doskonale. Rzeczywisty model był nam potrzebny do dokładnego zwizualizowania guza, co pozwoliło prawidłowo zaplanować operację i jej zakres [patologiczna struktura ciągnęła się wewnątrz dużej żyły od serca aż po miednicę] – wyjaśnia prof. Grzegorz Oszkinis z Uniwersyteckiego Szpitala Klinicznego w Opolu. Nieoczywista diagnoza Prof. Marek Gierlotka, kierownik Oddziału Kardiologii Uniwersyteckiego Szpitala Klinicznego w Opolu i Kliniki Kardiologii Uniwersytetu Opolskiego, opowiada, że pacjentka została przyjęta do szpitala, bo w badaniu ultrasonograficznym stwierdzono obecność dużej, nieprawidłowej struktury wewnątrz serca, która sięgała daleko w dół, wewnątrz dużej żyły, aż na wysokość miednicy. Wstępna diagnoza w tomografii komputerowej wskazywała na zakrzep, tym bardziej że chora rok wcześniej miała zator tętnicy płucnej. Ostatecznie przypadek okazał się o wiele bardziej skomplikowany, dlatego żeby wszystko ustalić i zaplanować leczenie, nawiązano współpracę z licznymi specjalistami: radiologami, patomorfologami, kardiochirurgami, chirurgami naczyniowymi, ginekologami i specjalistami od modelowania 3D z PO. Wykonaliśmy dodatkowo rezonans magnetyczny i obraz, który zobaczyłam, okazał się bardziej skomplikowany. Okazało się, że mamy do czynienia z rozległym nowotworem rozpoczynającym się od narządów rodnych, który rozrastając się wewnątrz dużej żyły, sięgał aż do serca – wyjaśnia dr n. med. Katarzyna Sznajder, kierownik Zakładu Klinicznego Diagnostyki Obrazowej USK UO w Opolu. Guz był tak duży, że odpowiednia objętość krwi nie dopływała do serca, przez co pacjentka nie tolerowała wysiłku i mdlała. Najpierw operatorzy zajęli się fragmentem guza od strony serca, a później usunięto przeważającą część nowotworu z miednicy i jamy brzusznej, czyli [z] narządów rodnych i żyły. W trakcie zabiegu chirurdzy wypreparowali żyłę główną dolną od żył biodrowych i nerkowych. Nacięli ją i usunęli całego guza. Pomoc specjalistów od modelowania 3D Pod względem merytorycznym pracami zespołu z PO kierowali prof. Jarosław Zygarlicki i prof. Mirosław Szmajda. Wobec wątpliwości co do dokładnej lokalizacji guza w żyle w oparciu o przeprowadzone w naszym zakładzie badania obrazowe, poprosiliśmy ich o opracowanie i wydrukowanie modelu 3D żyły z guzem w jej wnętrzu – wyjaśnia dr Sznajder. Prof. Andrzej Cichoń (również z PO) tłumaczy, że prace składały się z 3 zasadniczych faz: 1) detekcji obrysów żyły i zmiany patologicznej na podstawie przekrojów TK, 2) komputerowego modelowania żyły i zmiany oraz 3) ostatecznego wydruku 3D. Analiza ponad 1,5 tys. obrazów z tomografii komputerowej Ponieważ planowany czas prac był bardzo krótki, zadania należało podzielić. Analizą ponad 1500 obrazów tomografii komputerowej zajęła się ekipa studentów inżynierii biomedycznej (Anna Wieczorek, Karolina Nowak, Wiktoria Krak, Aleksandra Kawiak i Szymon Nieckarz), doktorantów (mgr inż. Anna Froń i mgr inż. Mirosław Chyliński) i naukowców PO (dr inż. Łukasz Nagi i prof. Mirosław Szmajda). Ze względu na złożoność zagadnienia i trudność interpretacji obrazów TK, szczególnie w przypadku badania zakontrastowanych żył, cały zespół został przeszkolony przez lek. med. Andrzeja Falbę, członka ekipy radiologów z USK, po czym w ciągu 3 dni (i nocy) zespół dokonał stosownych obrysów, zweryfikowanych finalnie przez dr. Falbę – relacjonuje prof. Szmajda. Modelowanie komputerowe i ostateczny wydruk 3D W drugiej fazie prac należało stworzyć wirtualny model przestrzenny żyły i patologicznej zmiany i zapisać w postaci umożliwiającej druk 3D (dla żyły, dla zmiany i dla całości). Zastosowaliśmy metody maszerujących sześcianów oraz triangulacji. Dzięki tym metodom zostały wygenerowane siatki trójkątów, które ostatecznie odwzorowały z zadaną dokładnością modele żyły oraz zmiany patologicznej. Następnie modele te posłużyły do przygotowania plików wejściowych do drukarki 3D - opowiada prof. Zygarlicki. W 3. fazie drukowano fizyczny model, dobierając najpierw odpowiednie surowce do uzyskania nieprzezroczystej zmiany i przezroczystych ścian żyły. Prof. Oszkinis podsumowuje, że po zabiegu nie wystąpiły żadne komplikacje. Stan pacjentki szybko się poprawiał. Została już wypisana do domu. « powrót do artykułu
  2. Eksperci z francuskiej firmy Ultimate Holography zbudowali drukarkę, która tworzy trójwymiarowe hologramy o niedostępnym dotychczas poziomie realizmu i niezwykle bogatych kolorach. Urządzenie można wykorzystać do odtwarzania oryginalnych kolorów lub scen w muzeach sztuki, modelach architektonicznych czy reklamie. Przez 15 lat pracowaliśmy nad zbudowaniem drukarki hologramów, która miałaby wszystkie zalety dotychczasowych technologii, a jednocześnie nie występowałyby w niej ich wady, takie jak kosztowne lasery, powolny wydruk, ograniczone pole widzenia hologramów czy słabo nasycone kolory. Osiągnęliśmy nasz cel dzięki drukarce CHIMERA, która wykorzystuje tanie komercyjne lasery i szybko drukuje hologramy z kolorem wysokiej jakości, mówi główny autor badań Yves Gentet. Wydruk wykonywany jest na specjalnym materiale zaprojektowanym przez twórców drukarki. Obraz można oglądać ze wszystkimi szczegółami i w pełnej gamie kolorów nawet pod kątem 120 stopni. Wydruki można tworzyć albo z trójwymiarowych modeli wygenerowanych na ekranie komputera, albo ze skanów fizycznych modeli. Do ich stworzenia potrzebny jest jednak dedykowany skaner autorstwa twórców CHIMERY. Co ciekawe, Francuzi wykorzystali firm, które poniosły rynkową porażkę. Firmy, które opracowały pierwsze dwie generacji holograficznych drukarek natknęły się na problemy technologiczne i zostały zamknięte. Nasz niewielki samofinansujący się zespół zauważył, że kluczem do sukcesu jest wysoce czuły fotomateriał o drobnym ziarnie, a nie sztywny komercyjnie dostępny materiał, jaki był wykorzystywany w poprzednich systemach, mówią przedstawiciele Ultimate Holography. Ich drukarka wykorzystuje tanie czerwone, zielone i niebieskie lasery o niewielkiej mocy ze specjalnymi migawkami, które z dokładnością do milisekund regulują ekspozycję nośnika druku na światło. Powstał też specjalny system zapobiegający wibracją, dzięki któremu nośnik pozostaje nieruchomy przez cały czas trwania wydruku. Po wykonaniu nadruku nośnik jest zanurzany w specjalnej mieszaninie chemicznej a całość jest następnie zabezpieczana przed wpływem środowiska. Holograficzne piksele, czyli hogele, mają rozmiary 250-500 mikrometrów, a prędkość wydruku wynosi od 1 do 50 Hz. Na przykład dla 250-mikronowego hogela druk jest wykonywany z prędkością 50 Hz. To oznacza, że wydruk hologramu o rozmiarach 30x40 cm trwa 11 godzin, czyli jest dwukrotnie szybszy niż przy użyciu wcześniejszych technologii. Nowy system oferuje znacznie szersze pole widzenia, wyższą rozdzielczość, zauważalnie lepsze odwzorowanie kolorów i rozpiętość tonalną niż dotychczasowe systemy. Opracowany przez nas nośnik zapewnia większą jasność, a lasery o niskiej mocy powodują, że system jest łatwy w użyciu, zapewnia Gentet. Twórcy CHIMERY twierdzą, że w miarę rozwoju technologii, szczególnie oprogramowania 3D, możliwe będzie wykorzystanie ich urządzenia do tworzenia wydruków holograficznych na potrzeby medycyny i innych zaawansowanych zastosowań. « powrót do artykułu
×
×
  • Dodaj nową pozycję...