Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' superrozbłysk' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Analiza ponad 50 000 gwiazd wykazała, że rozbłyski słoneczne mogą być setki razy potężniejsze, niż najsilniejszy rozbłysk kiedykolwiek zanotowany przez astronomów. Na łamach pisma Science badacze z Instytutu Badań Układu Słonecznego im Maxa Plancka poinformowali, że po przebadaniu 56 540 gwiazd doszli do wniosku, że każda z nich średnio co 100 lat doświadcza gigantycznego rozbłysku. Wyniki badań wskazują, że dotychczas potencjał gwiazd był niedoszacowany. Z danych zebranych przez Teleskop Keplera wynika bowiem, że gigantyczne rozbłyski mają miejsce 10-100 razy częściej niż sądzono. Już wcześniejszych badań wiadomo było, że na Słońcu może dochodzić do potężnych erupcji. Ich ślady znajdowano w prehistorycznych drzewach i lodzie z lodowców. Jednak na podstawie takich źródeł nie można było stwierdzić, jak często tego typu wydarzenia mają miejsce. Bezpośrednie pomiary ilości promieniowania docierającego ze Słońca na Ziemię potrafimy wykonywać dopiero od kilkudziesięciu lat. Istnieje jednak inny sposób na zdobycie danych na temat długoterminowego zachowania się Słońca. Współczesne teleskopy kosmiczne obserwują tysiące gwiazd i zbierają dane o zmianach ich jasności. W danych tych widać też potężne rozbłyski. Nie możemy obserwować Słońca przez tysiące lat. Możemy jednak badać zachowanie tysięcy gwiazd bardzo podobnych do Słońca w krótkim okresie czasu. To pozwala nam ocenić, jak często dochodzi do superrozbłysków, mówi współautor badań, profesor Sami Solanki. Naukowcy z Niemiec, Austrii, USA, Japonii, Finlandii i Francji przeanalizowali dane z 56 450 gwiazd dostarczone w latach 2009–2013 przez Teleskop Kosmiczny Keplera. W sumie Kepler dostarczył nam danych z 220 tysięcy lat aktywności słonecznej, wyjaśnia profesor Alexander Shapiro z Uniwersytetu w Grazu. Kluczowym elementem był dobór gwiazd jak najbardziej podobnych do naszej. Badacze wybrali więc te, których temperatura powierzchni i jasność były jak najbardziej zbliżone. W czasie badań zidentyfikowano 2889 superrozbłysków, które miały miejsce na 2527 gwiazdach spośród 56 450 wybranych. To oznacza, że każda z gwiazd generuje jeden superrozbłysk w ciągu stu lat. To było zaskakujące. Naukowcy nie spodziewali się, że potężne rozbłyski mają miejsce tak często. Dotychczas bowiem, na podstawie dowodów znalezionych na Ziemi, wydawało się, że dochodzi do nich znacznie rzadziej. Gdy cząstki z potężnego rozbłysku trafią do ziemskiej atmosfery, dochodzi do wytwarzania mierzalnych ilości pierwiastków promieniotwórczych, takich jak węgiel-14. Pierwiastki te trafiają do naturalnych archiwów, jak pierścienie drzew czy lód w lodowcach. Więc informacje o takim wydarzeniu na Słońcu można odczytać tysiące lat później na Ziemi. W ten sposób naukowcom udało się zidentyfikować 5 ekstremalnych wydarzeń tego typu i 3 kandydatów na rozbłyski. Doszło do nich w ciągu ostatnich 12 tysięcy lat. Z tego też powodu sądzono, że Słońce generuje superrozbłyski raz na około 1500 lat. I o ile wiadomo, ostatnie takie wydarzenie miało miejsce w 775 roku. Wyniki badań mogą niepokoić. O ile w roku 775 wynikiem skierowanego w stronę Ziemi rozbłysku mógł być niewielki wzrost zachorowań na nowotwory skóry, to współczesna cywilizacja techniczna bardzo boleśnie odczułaby skutki takiego wydarzenia. Już przed kilkunastu laty amerykańskie Narodowe Akademie Nauk opublikowały raport dotyczący ewentualnych skutków olbrzymiego koronalnego wyrzutu masy, który zostałby skierowany w stronę Ziemi. Takie wydarzenie spowodowałoby poważne perturbacje w polu magnetycznym planety, co z kolei wywołałoby przepływ dodatkowej energii w sieciach energetycznych. Nie są one przygotowane na tak gwałtowne zmiany. Omawiając ten raport, pisaliśmy, że mogłoby dojść do stopienia rdzeni w stacjach transformatorowych i pozbawienia prądu wszystkich odbiorców. Autorzy raportu stwierdzili, że gwałtowny koronalny wyrzut masy mógłby uszkodzić 300 kluczowych transformatorów w USA. W ciągu 90 sekund ponad 130 milionów osób zostałoby pozbawionych prądu. Mieszkańcy wieżowców natychmiast straciliby dostęp do wody pitnej. Reszta mogłaby z niej korzystać jeszcze przez około 12 godzin. Stanęłyby pociągi i metro. Z półek sklepowych błyskawiczne zniknęłaby żywność, gdyż ciężarówki mogłyby dostarczać zaopatrzenie dopóty, dopóki miałyby paliwo w zbiornikach. Pompy na stacjach benzynowych też działają na prąd. Po około 72 godzinach skończyłoby się paliwo w generatorach prądu. Wówczas stanęłyby szpitale. Najbardziej jednak przerażającą informacją jest ta, iż taki stan mógłby trwać całymi miesiącami lub latami. Uszkodzonych transformatorów nie można naprawić, trzeba je wymienić. To zajmuje zespołowi specjalistów co najmniej tydzień. Z kolei duże zakłady energetyczne mają na podorędziu nie więcej niż 2 grupy odpowiednio przeszkolonych ekspertów. Nawet jeśli część transformatorów zostałaby dość szybko naprawiona, nie wiadomo, czy w sieciach byłby prąd. Większość rurociągów pracuje bowiem dzięki energii elektrycznej. Bez sprawnego transportu w ciągu kilku tygodni również i elektrowniom węglowym skończyłyby się zapasy. Sytuacji nie zmieniłyby też elektrownie atomowe. Są one zaprojektowane tak, by automatycznie wyłączały się w przypadku poważnych awarii sieci energetycznych. Ich uruchomienie nie jest możliwe przed usunięciem awarii. O tym, że to nie tylko teoretyczne rozważania, świadczy chociażby fakt, że w marcu 1989 roku burza na Słońcu na 9 godzin pozbawiła prądu 6 milionów Kanadyjczyków. Z kolei najpotężniejszym tego typu zjawiskiem, jakie zachowało się w ludzkiej pamięci, było tzw. wydarzenie Carringtona z 1859 roku. Kilkanaście godzin po tym, jak astronom Richard Carrington zaobserwował dwa potężne rozbłyski na Słońcu, Ziemię zalało światło zórz polarnych. Przestały działać telegrafy, doszło do pożarów drewnianych budynków stacji telegraficznych, a w Ameryce Północnej, gdzie była noc, ludzie mogli bez przeszkód czytać gazety. Igły kompasów poruszały się w sposób niekontrolowany, a zorze polarne było widać nawet w Kolumbii. A pamiętać trzeba, że wydarzenie Carringtona było znacznie słabsze, niż superrozbłyski, o których tutaj mowa. Obecnie ucierpiałyby nie tylko sieci elektromagnetyczne, ale również łączność internetowa. Na szczególne niebezpieczeństwo narażone byłyby kable podmorskie, a konkretnie zainstalowane w nich wzmacniacze oraz ich uziemienia. Więc nawet gdy już uda się przywrócić zasilanie, problemem będzie funkcjonowanie globalnego internetu, bo naprawić trzeba będzie dziesiątki tysięcy kilometrów kabli. « powrót do artykułu
  2. Astronomowie używający teleskopów Europejskiego Obserwatorium Południowego (ESO) odkryli olbrzymie plamy na powierzchni ekstremalnie gorących gwiazd schowanych w gromadach gwiazd. Gwiazdy te są nie tylko nękane przez plamy magnetyczne, ale niektóre z nich doświadczają także superrozbłysków – eksplozji energii kilka milionów razy bardziej energetycznych niż podobne wybuchy na Słońcu. Wyniki badań, opublikowane dzisiaj w Nature Astronomy, pomogą astronomom lepiej zrozumieć te zagadkowe gwiazdy i otworzą drzwi do rozwiązania innych nieuchwytnych tajemnic astronomii gwiazdowej. Zespół, którym kierował Yazan Momany z INAF Astronomical Observatory of Padua we Włoszech, zbadał szczególny typ gwiazd z gorącego krańca gałęzi horyzontalnej (ang. extreme horizontal branch stars, w skrócie: gwiazdy EHB) – obiekty o masie około połowy masy Słońca, ale cztery do pięciu razy gorętsze. Te gorące i małe gwiazdy są specjalne, ponieważ wiemy, że ominą jedną z końcowych faz życia typowej gwiazdy i umrą przedwcześnie tłumaczy Momany, który pracował wcześniej jako astronom w Obserwatorium Paranal w Chile. W naszej Galaktyce te osobliwe gorące obiekty są zwykle związane z występowaniem bliskiego towarzysza gwiazdowego. Jednak nieoczekiwanie, zdecydowana większość gwiazd z gorącego krańca gałęzi horyzontalnej nie wydaje się posiadać towarzyszek, gdy są obserwowane w ciasno upakowanych grupach gwiazd, zwanych gromadami kulistymi. Długoterminowe monitorowanie tych gwiazd przez zespół, prowadzone przy pomocy teleskopów ESO, ujawniło także, że z tymi tajemniczymi obiektami dzieje się coś więcej. Obserwując trzy różne gromady kuliste, Momany i jego współpracownicy odkryli, że wiele gwiazd EHB w tych gromadach wykazuje regularne zmiany jasności w przeciągu zaledwie kilku dni lub tygodni. Po wyeliminowaniu wszystkich innych scenariuszy, pozostała tylko możliwość wyjaśnienia obserwowanych zmian jasności podkreśla Simone Zaggia, współautor badań z INAF Astronomical Observatory of Padua we Włoszech, kiedyś stażysta w ESO: te gwiazdy muszą mieć plamy! Plamy na gwiazdach EHB wydają się być całkiem odmienne od ciemnych plam słonecznych na naszym Słońcu, ale oba przypadki są związane z polami magnetycznymi. Plamy na tych gorących, ekstremalnych gwiazdach są jaśniejsze i gorętsze niż otaczająca je powierzchnia gwiazdy, w przeciwieństwie do Słońca, gdzie widzimy plamy jako ciemne obszary na powierzchni, chłodniejsze niż otoczenie. Plamy na gwiazdach EHB są także znacząco większe niż plamy słonecznej. Pokrywają do jednej czwartej powierzchni gwiazdy. Plamy te są niezwykle trwałe, istnieją przez dekady. Natomiast w przypadku pojedynczych plam słonecznych są one tymczasowe, istnieją od kilku dni do miesięcy. Ponieważ gorąca gwiazda obraca się, plamy na jej powierzchni pojawiają się i znikają z naszego pola widzenia, powodując zauważalne zmiany w jasności. Oprócz zmian w jasności spowodowanych plamami, zespół odkrył także, że niektóre gwiazdy z gorącego krańca gałęzi horyzontalnej wykazują superrozbłyski – nagłe eksplozje energii i inne oznaki występowania pola magnetycznego. „Zjawiska te są podobne do rozbłysków, które obserwujemy na naszym Słońcu, ale dziesiątki miliony razy bardziej energetyczne” mówi Henri Boffin, współautor badań, astronom w siedzibie ESO w Niemczech. Takie zachowanie zdecydowanie nie było oczekiwane i podkreśla ważną rolę pól magnetycznych w wyjaśnianiu własności tego typu gwiazd. Po sześciu dekadach prób zrozumienia gwiazd z gorącego krańca gałęzi horyzontalnej astronomowie dysponują teraz bardziej kompletnym obrazem tych obiektów. Co więcej, badania te mogą pomóc w wyjaśnieniu pochodzenia silnych pól magnetycznych w wielu białych karłach (obiektach reprezentujących finalne stadium w życiu gwiazd podobnych do Słońca) i pokazać podobieństwa do gwiazd z gorącego krańca gałęzi horyzontalnej. Ogólniejszy obraz jest taki, że zmiany w jasności wszystkich gorących gwiazd – od młodych gwiazd podobnych do Słońca, do starych gwiazd EHB i martwych białych karłów – mogą być połączone ze sobą. Można więc obiekty te rozumieć jako wspólnie cierpiące od plam magnetycznych na ich powierzchniach dodaje David Jones, członek zespołu i dawny stażysta w ESO, obecnie zatrudniony w Instituto de Astrofísica de Canarias w Hiszpanii. Aby uzyskać opisane wyniki, astronomowie użyli różnych instrumentów na należącym do ESO teleskopie VLT, w tym VIMOS, FLAMES i FORS2, a także OmegaCAM na VLT Survey Telescope w Obserwatorium Paranal. Wykorzystani także ULTRACAM na  Teleskopie Nowej Technologii (NTT) w Obserwatorium La Silla w Chile. Przełom nastąpił, gdy zespół obserwował gwiazdy w bliskim ultrafiolecie, co pozwoliło na zbadanie gorętszych gwiazd, wyróżniających się jasnością pośród chłodniejszych gwiazd w gromadzie kulistej. « powrót do artykułu
×
×
  • Dodaj nową pozycję...