Znajdź zawartość
Wyświetlanie wyników dla tagów ' poker' .
Znaleziono 3 wyniki
-
Fizycy z Chin zaprezentowali wersję gry go opierającą się na mechanice kwantowej. W swojej symulacji naukowcy wykorzystali splątane fotony do ustawiania kamieni na planszy, zwiększając w ten sposób trudność gry. Ich technologia może posłużyć jako pole testowe dla sztucznej inteligencji. Wielkim wydarzeniem końca XX wieku było pokonanie arcymistrza szachowego Garry'ego Kasparowa przez superkomputer Deep Blue. Jednak go stanowiło znacznie trudniejsze wyzwanie. Ta gra o bardzo prostych zasadach posiada bowiem więcej kombinacji niż szachy. Jednak 20 lat później, w 2016 roku dowiedzieliśmy się, że SI pokonała mistrza go. Jednak szachy i go to gry o tyle łatwe dla komputerów, że na bieżąco znany jest stan rozgrywki. Nie ma tutaj ukrytych elementów. Wiemy co znajduje się na planszy i co znajduje się poza nią. Zupełnie inne wyzwanie stanowią takie gry jak np. poker czy mahjong, gdzie dochodzi element losowy, nieznajomość aktualnego stanu rozgrywki – nie wiemy bowiem, co przeciwnik ma w ręku – czy też w końcu blef. Także i tutaj maszyny radzą sobie lepiej. Przed rokiem informowaliśmy, że sztuczna inteligencja wygrała w wieloosobowym pokerze. Xian-Min Jin z Szanghajskiego Uniwersytetu Jiao Tong i jego koledzy postanowili dodać element niepewności do go. Wprowadzili więc doń mechanikę kwantową. „Kwantowe go” zostało po raz pierwszy zaproponowane w 2016 roku przez fizyka Andre Ranchina do celów edukacyjnych. Chińczycy wykorzystali tę propozycję do stworzenia systemu, który ma podnosić poprzeczkę sztucznej inteligencji wyspecjalizowanej w grach. W standardowej wersji go mamy planszę z 19 liniami poziomymi i 19 pionowymi. Na przecięciach linii gracze na przemian układają swoje kamienie, starając się ograniczyć nimi jak największy obszar planszy. W kwantowej wersji go ustawiana jest natomiast para splątanych kamieni. Oba kamienie pozostają na planszy dopóty, dopóki nie zetkną się z kamieniem z sąsiadującego pola. Wówczas dochodzi do „pomiaru”, superpozycja kamieni zostaje zniszczona i na planszy pozostaje tylko jeden kamień, a nie splątana para. W go gracz może zbić kamienie przeciwnika wówczas, gdy ustawi swoje kamienie na wszystkich sąsiadujących z przeciwnikiem polach. Jednak by do takiej sytuacji doszło w „kwantowym go” wszystkie otoczone kamienie przeciwnika muszą być kamieniami klasycznymi, żaden z nich nie może pozostawać w superpozycji z innym kamieniem na planszy. Jednak gracze nie wiedzą, który z kamieni w jakim stanie się znajduje, dopóki nie dokonają pomiaru. Jin i jego koledzy wyjaśniają, że ich symulacja pozwala na dostrojenie procesu pomiaru poprzez manipulacje splątaniem. Jeśli kamienie w danej parze są splątane w sposób maksymalny, to wynik pomiaru będzie całkowicie przypadkowy, nie potrafimy przewidzieć, który z kamieni po pomiarze pozostanie na planszy. Jeśli jednak splątanie będzie mniej doskonałe, jeden z kamieni będzie miał większą szansę na pozostanie na planszy. To prawdopodobieństwo będzie znane tylko temu graczowi, do którego kamień należy. Gra traci w tym momencie swoją całkowitą nieprzewidywalność, jednak pozostaje w niej duży element niedoskonałej informacji. Chińczycy przekuli teorię na praktykę tworząc pary splątanych fotonów, które były wysyłane do rozdzielacza wiązki, a wynik takiego działania był mierzony za pomocą czterech wykrywaczy pojedynczych fotonów. Jeden zestaw wyników reprezentował „0” a inny „1”. W ten sposób oceniano prawdopodobieństwo zniknięcia jednej z części pary wirtualnych kamieni ustawianych na przypadkowo wybranych przecięciach linii przez internetowe boty. Poprzez ciągłe generowanie splątanych fotonów i przechowywaniu wyników pomiarów naukowcy zebrali w ciągu godziny około 100 milionów możliwych wyników zniknięcia stanu splątanego. Taka ilość danych pozwala na przeprowadzenie dowolnej rozgrywki w go. Uczeni, analizując rozkład zer i jedynek w czasie potwierdzili, że nie występuje znacząca korelacja pomiędzy następującymi po sobie danymi. Tym samym, dane są rzeczywiście rozłożone losowo. Jin mówi, że rzeczywista złożoność i poziom trudności kwantowego go pozostają kwestią otwartą. Jednak, zwiększając rozmiary wirtualnej planszy i włączając do tego splątanie, można – jego zdaniem – zwiększyć trudność samej gry do takiego stopnia, by dorównywała ona takim grom jak mahjong, gdzie większość informacji jest ukrytych. Dzięki temu kwantowe go może stać się obiecującą platformą do testowania nowych algorytmów sztucznej inteligencji. « powrót do artykułu
-
- sztuczna inteligencja
- poker
-
(i 4 więcej)
Oznaczone tagami:
-
Przed dwoma laty program Libratus wygrał w pokera z czterema zawodowcami. Wielodniowy turniej był rozgrywany w konwencji jeden na jednego, a ludzie ponieśli sromotną klęskę. Dla sztucznej inteligencji był to olbrzymi krok naprzód, jednak nawet współtwórca Libratusa, profesor Tuomas Sandholm, nie wierzył, by SI poradziła sobie jednocześnie z większą liczba graczy. Uczony właśnie udowodnił sam sobie, że się mylił. Sandholm jest współautorem algorytmu o nazwie Pluribus, który właśnie wygrał z sześcioma zawodowcami w nielimitowany Texas Hold'em. Nie sądziłem, że stanie się to możliwe za mojego życia, stwierdził uczony. Dotychczas sztuczna inteligencja coraz lepiej radziła sobie w grach z ludźmi, ale były to rozgrywki jeden na jeden lub drużynowe, dwóch przeciwko dwóm. SI zadziwiała swoimi osiągnięciami w warcabach, szachach, Go oraz pokerze. Wszystkie mecze były rozgrywkami o sumie zerowej. Jedna strona wygrywała, druga przegrywała. Jednak gra przeciwko sześciu osobom to zupełnie inny poziom trudności. Bardziej przypomina to rzeczywiste sytuacje, gdy trzeb podejmować decyzje nie znając zasobów (kart) i procesu podejmowania decyzji przez przeciwników. To pierwszy poważny sprawdzian możliwości SI w sytuacji innej niż pojedynek lub walka dwóch drużyn i gra o sumie zerowej. Po raz pierwszy wyszliśmy poza ten paradygmat i wykazaliśmy, że SI dobrze radzi sobie w takich sytuacjach, mówi współtwórca Pluribusa Noam Brown, zatrudniony w Facebook AI Research. Pluribus zaczynał od rozgrywki, w której brał udział 1 człowiek i 5 niezależnych wersji Pluribusa. Z czasem doszedł do poziomu, w którym mógł wygrać z 5 profesjonalistami jednocześnie. Przeciwnikami sztucznej inteligencji było 15 zmieniających się zawodowych graczy, z których każdy wcześniej wygrał w pokera co najmniej milion dolarów. Rozegrano 10 000 rozdań, a turniej trwał 12 dni. Co prawda Pluribus nie odniósł nad ludźmi tak miażdżącego zwycięstwa jak Libratus, jednak jego osiągnięcia zaskoczyły ekspertów. Istniały pewne dowody wskazujące, że techniki SI wykorzystane w pokerowym pojedynku powinny działać też przy trzech graczach, jednak nie było jasne, czy można je zastosować do większej liczby przeciwników grających na najwyższym poziomie. To naprawdę sensacyjna wiadomość, że sprawdziły się one w meczu sześcioosobowym. To ważny kamień milowy, mówi profesor Michael Wellman z University of Michigan. Pluribus, podobnie jak Libratus, uczył się pokera rozgrywając wiele symulowanych pojedynków sam ze sobą. Jak informują jego twórcy, sukces programu leży w zastosowaniu „wyszukiwania o ograniczonej głębokości”. Mechanizm ten pozwala SI na obliczenie dla wszystkich przeciwników kilku ruchów naprzód i opracowaniu na tej podstawie najlepszej strategii. Tego typu taktykę wykorzystuje wiele programów grających w pokera, jednak jej użycie w przypadku rozgrywki sześcioosobowej wymaga kolosalnych ilości pamięci do przechowania wszystkich możliwych ruchów wszystkich przeciwników oraz wszystkich możliwych zakładów. Libratus radził sobie z tym problemem biorąc pod uwagę jedynie dwie ostatnie rundy podbić. Jednak i tak wymagało to użycia 100 procesorów dla gry dwuosobowej. Pluribus działał nieco inaczej. Brał pod uwagę tylko cztery możliwe zachowania przeciwnika. Jedno to obliczony najbardziej prawdopodobny ruch, drugie w którym przeciwnik skłania się ku pasowi, trzecie gdy przeciwnik raczej wybiera sprawdzenie oraz ostatnie, gdy przeciwnik raczej podbija stawkę. Dzięki temu możliwe było znaczące ograniczenie wymaganych zasobów liczeniowych. Wykorzystane algorytmy były niezwykle wydajne. Dość wspomnieć, że podczas pokazu na żywo Pluribus był uruchomiony na maszynie zawierającej jedynie dwa procesory i 128 GB RAM. To zadziwiające, że w ogóle to się udało i że udało się bez wykorzystywania mocy obliczeniowej procesorów graficznych i innego ekstremalnie wydajnego sprzętu, cieszy się Sandholm. Dość tutaj wspomnieć, że program AlphaGo, który w 2016 roku pokonał w Go Lee Sedola korzystał z 1920 CPU i 280 GPU. Specjaliści z Carnegie Mellon University i Facebooka, którzy stworzyli Pluribusa, opublikują jedynie jego pseudkod, czyli opis kroków niezbędnych do stworzenia podobnego programu. Zdecydowali jednak, że nie upublicznią prawdziwego kodu, by nie ułatwiać rozpowszechniania oprogramowania do gry w pokera. Mogłoby to bowiem zniszczyć zarówno tę dziedzinę działalności gospodarczej jak i społeczność graczy. Wykorzystany algorytm SI może znaleźć zastosowanie wszędzie tam, gdzie trzeba podjąć decyzje bez pełniej wiedzy o tym, co robią lub myślą inni. Przyda się w takich dziedzinach jak cyberbezpieczeństwo, handel, negocjacje biznesowe czy ustalanie cen. Zdaniem Sandhloma może też pomóc podczas zbliżających się wyborów prezydenckich w USA, gdyż pomoże kandydatom na określenie poziomu wydatków potrzebnych do zwycięstwa w kluczowych stanach. Sandholm założył już trzy firmy, które będą świadczyły usługi z wykorzystaniem SI na rynkach biznesowych czy wojskowych,. « powrót do artykułu
-
Padła kolejna bariera oddzielająca ludzką i sztuczną inteligencję. Program Libratus rozgromił światową czołówkę pokerzystów. W nielimitowanym Texas Hold'em sztuczna inteligencja zdobyła na ludziach 1.766.250 dolarów. Dong Kim przegrał z Libratusem 88.649 USD, Jimmy Chou zubożał o 522.857 dolarów, Jason Les stracił 880.087 USD, a Daniel McAulay musiał zapłacić 277.657 USD. Turniej Brains vs. Artificial Intelligence trwał od 11 do 30 stycznia i był rozgrywany w godzinach od 11.00 do 19.00. Składał się w sumie ze 120 000 rozdań. Libratus powstał na Carnegie Mellon University i jest dziełem profesora Tuomasa Sandholma i doktoranta Noama Browna. Podczas uczenia się pokera program nie korzystał z doświadczeń ludzkich graczy. Zaimplementowano mu zasady gry, które miał przeanalizować, a później - na podstawie około 15 milionów godzin obliczeń w Pittsburgh Supercomputing Center - opracowywał własną strategię. Udoskonalał ją też w czasie turnieju. Nie uczyliśmy Libratusa grać w pokera. Daliśmy mu zasady i kazaliśmy się uczyć samemu - mówi Brown. Początkowo rozgrywki były niezwykle chaotyczne, program zgrywał przypadkowe karty. Jednak po bilionach rozdań opracował skuteczną strategię. Przed wielu laty oprogramowanie komputerowe zadziwiło świat wygrywając w szachy z arcymistrzem. Niedawno rozgromiło też mistrza Go. Zwycięstwo w pokerze pokazuje, że algorytmy sztucznej inteligencji przekroczyły kolejną granicę. Poker znacząco różni się bowiem od szachów czy Go. Gracze nie znają stanu rozgrywki, gdyż nie wiedzą, jakie karty ma przeciwnik. Dochodzi tutaj też element losowy, gdyż to on decyduje, kto jakie karty dostanie oraz element blefu. To tak złożone wyzwanie, że dotychczas badacze zajmujący się SI nie radzili sobie z nim, stwierdza Sandholm. Uczony dodaje, że sam nie był pewien możliwości Liberatusa. Międzynarodowe witryny z zakładami stawiały 4:1 przeciwko naszemu programowi. Okazało się jednak, że wszystko to nie stanowi dla Libratusa większego problemu. Sztuczna inteligencja była w stanie prawidłowo interpretować blef, używany przez ludzkich przeciwników, i... sama blefowała, co zaskoczyło jej twórców. Gdy zobaczyłem, że Liberatus blefuje, zdziwiłem się. nie uczyłem go tego. Nie sądziłem, że jest do tego zdolny. Jestem dumny z faktu, że stworzyłem coś, co potrafi tego dokonać - mówi Brown. Libratus był znacznie lepszy niż sądziliśmy. To nieco demoralizujące, mówi Jason Les, który przed dwoma laty był grupie graczy, którzy rozgromili SI Claudico. Tutaj codziennie wstawaliśmy i przez 11 godzin na dobę byliśmy ogrywani. To zupełnie inne doświadczenie emocjonalne - dodaje. Gracze mogli też uczyć się od Libratusa, który stosował agresywną strategię, stawiał duże sumy, by wygrać małe kwoty. Ludzie tak normalnie nie grają, ale to wymusza na tobie ciągłą koncentrację uwagi - dodaje Les. Zastosowane w Libratusie algorytmy nie są wyspecjalizowane w pokerze. A to oznacza, że będzie można zastosować je w wielu dziedzinach, od gier komputerowych, poprzez negocjacje biznesowe, po branże bezpieczeństwa, wojskową czy medyczną - wszędzie tam, gdzie potrzebne jest strategiczne myślenie w oparciu o niepełne informacje. Poker to najmniejsze zmartwienie. Mamy tutaj maszynę, która może skopać ci tyłek w biznesie i zastosowaniach wojskowych. Martwię się, jak ludzkość sobie z tym poradzi - stwierdził profesor Roman V. Yampolskiy z University of Louisville. « powrót do artykułu
- 46 odpowiedzi
-
- Libratus
- sztuczna inteligencja
-
(i 1 więcej)
Oznaczone tagami: