Znajdź zawartość
Wyświetlanie wyników dla tagów ' lit' .
Znaleziono 2 wyniki
-
Inżynierowie z Arizona State University, U.S. Army Research Laboratory, Lehigh University i Louisiana State University stworzyli wyjątkowo stabilny w wysokich temperaturach stop miedzi o niezwykłej wytrzymałości mechanicznej. Materiał Cu-3-Ta-0.5Li opisany został na łamach Science. Nasz stop czerpie z wyjątkowej wytrzymałości nadstopów niklu, wyjaśnia profesor Kiran Solanki, współautor badań. Obecnie nadstopy (superstopy) niklu, materiały charakteryzujące się dużą żarowytrzymałością – czyli zdolnością do znoszenia znacznych obciążeń w wysokiej temperaturze – i odporne na korozję wykorzystywane są tam, gdzie tego typu wyjątkowe właściwości są koniecznością. Spotkamy je w przemyśle lotniczym i kosmicznym, turbinach gazowych czy urządzeniach wykorzystywanych w przemyśle chemicznym. Wciąż jednak trwają poszukiwania nowych materiałów. Szczególnie duże zapotrzebowanie istnieje ze strony przemysłu lotniczego, kosmicznego i obronnego. Nowy materiał zawdzięcza swoje wyjątkowe właściwości unikatowej strukturze litu i miedzi uzyskanej przez strącanie (precypitację), która otoczona jest warstwą bogatą w tantal. Dodanie dokładnie 0,5 procenta litu zmieniło strukturę materiału. Wcześniej układ Cu-Ta miał niestabilną strukturę kulistą, zaś po dodaniu Li zmienił się w stabilne struktury sześcienne. Właściwości takiego materiału są imponujące. Cu-3Ta-0.5Li pozostaje stabilny przez ponad 10 000 godzin w temperaturze 800 stopni Celsjusza. W temperaturze pokojowej jego granica plastyczności – czyli granica poza którą zaczyna się trwale odkształcać – wynosi 1120 MPa. Jest więc znacznie powyżej granicy plastyczności dla tytanu, wynoszącej 880 MPa. Nowy materiał jest też wyjątkowo odporny na pełzanie, czyli powolne odkształcanie pod wpływem długotrwałego obciążenia. « powrót do artykułu
-
Nowa elektroda, opracowana na MIT, pozwoli na zbudowanie akumulatorów, które przechowują więcej energii i pracują dłużej. Litowa anoda to efekt współpracy naukowców z MIT ze specjalistami z Hongkongu, Florydy i Teksasu. Jednym z największych problemów ze współczesnymi akumulatorami wynika z faktu, że w miarę ładowania akumulatora lit się rozszerza, a podczas rozładowywania kurczy się. Te ciągłe zmiany rozmiarów prowadzą do pękania lub odłączania się elektrolitu. Inny problem stanowi fakt, że żaden z używanych stałych elektrolitów nie jest tak naprawdę chemicznie stabilny w kontakcie z wysoko reaktywnym litem, ulega więc degradacji. Większość badań, mających na celu rozwiązanie tych problemów, poszukuje stabilnego elektrolitu. To jednak jest trudne. Naukowcy z MIT podeszli do problemu inaczej. Wykorzystali dwa dodatkowe materiały. Jeden nazwali „zmieszanymi przewodnikami jonowo-elektronicznymi” (MIEC), a drugi to „izolatory elektronu i jonu litowego” (ELI). Uczeni stworzyli trójwymiarową nanostrukturę przypominająca plaster miodu. Została ona zbudowana z heksagonalnych rurek MIEC częściowo wypełnionych litem. W każdej z rurek pozostawiono nieco wolnego miejsca. Gdy lit się rozszerza podczas ładowania, wypełnia puste miejsca w rurkach, poruszając się jak ciecz, mimo że zachowuje przy tym krystaliczną strukturę ciala stałego. Przepływ ten łagodzi naprężenia powstające podczas rozszerzania się litu, ale jednocześnie nie powoduje ani zmiany zewnętrznych rozmiarów elektrody, ani zmiany jej styku z elektrolitem. Drugi zaś ze wspomnianych materiałów, ELI, jest kluczowym mechanicznym łączem pomiędzy ściankami MIEC a stałym elektrolitem. Rozszerzający się i kurczący lit przemieszcza się tak, że nie wywiera nacisku na elektrolit, więc go nie niszczy. Twórcy anody porównują to do tłoków poruszających się w cylindrach. Jako, że całość jest jest zbudowana w skali nano, a każda z rurek ma średnicę 100-300 nanometrów, całość jest jak silnik z 10 miliardami tłoków, mówi główny autor badań, profesor Ju Li. Jako, że ścianki całej struktury wykonano z chemicznie stabilnego MIEC, lit nigdy nie traci kontaktu z materiałem. Cały akumulator pozostaje więc mechanicznie i chemiczne stabilny, dodaje Li. Naukowcy przetestowali swoją anodę podczas 100 cykli ładowania/rozładowywania i wykazali, że w elektrolicie nie powstały żadne pęknięcia. Naukowcy twierdzą, że ich projekt pozwoli na stworzenie akumulatorów litowych, w których anoda będzie 4-krotnie lżejsza na jednostkę pojemności niż obecnie. Jeśli dodamy do tego nowe pomysły na lżejszą katodę, całość może prowadzić do znaczącego obniżenia wagi akumulatora. Dzięki nowemu akumulatorowi nowoczesne smartfony można by ładować raz na 3 dni. « powrót do artykułu